Triple Play; Triple Threats? IPTV Security

Yen-Ming Chen
Senior Principal Consultant
Foundstone, A division of McAfee
Agenda

» “Triple Play” Strategy
 – The Business Case
» IPTV Introduction
» IPTV Security
» Countermeasures
» Conclusion
Introduction

Yen-Ming Chen

» Sr. Principal Consultant
» Been with Foundstone for 6 years
» Contributing author of four security books and numerous published articles.
» Master of Science in Information Networking from C.M.U.
» Provide security risk assessment from web applications to emerging technologies
IP TV Market

- **Triple-Play**
 - Data, Voice and Video on the same network
 - Increase Average Revenue Per Unit (ARPU)
- **About 2 million IPTV subscriber world wide now**
- **Expect to be 63 Million in 2010 (iSuppli)**
- **IPTV generated revenue:**
 - $2 Billion now
 - $26 Billion in 2010
- **IPTV has been there (remember Web TV?); but is getting more momentum now.**
IPTV Revenue Forecast

Global IPTV Revenue Forecast

[Bar chart showing revenue forecast for 2004 to 2008 by region: Asia, Europe, North America, ROW Total.]

Source: Multimedia Research Group, Inc.
IPTV

» Part of the “Triple-Play” strategy
 – Service provided on Telecoms’ own network
 • Easy to control quality
» Standalone service provider
 – Use the Internet as their own backbone
 – Watching TV from China in your home at London
 – P2P streaming, Web TV or RTP
» Others (short videos, lower resolution)
 – YouTube, Google Video and other vBlogs
» There are over 350 IPTV Service Providers
» 60+ different vendors
» We will focus on the first type of IPTV
Known Security Problems

» Data Service
 – Home computers are turned into Zombies
 – Phishing, Spamming and DoS

» Voice over IP (The Grugg will talk about this tomorrow)
 – Conversation eavesdropping
 – Phreaking, free phone calls
 – Device insecurity
 – Denial-of-Service
IP TV Overview

» Video content offered on your broadband network
 – Subscription
 – Video-On-Demand
 – Interactive applications (web browsing, e-mail, games and others)

» Architecture
 – Content Source
 – Delivery and Management Network
 – Home Network
IPTV Security Testing

» A combination of:
 – Network penetration testing
 – Web application security testing
 – Device security testing
 – Software vulnerability testing

» May also include
 – Policy and procedure review
IPTV Walkthrough (Home Users)

» Home gateway (if any) boots up and authenticates

» Set-Top Box boots up and authenticates
 – DHCP, TFTP or NFS to get the latest boot images
 – Authenticate with MAC, random nonce or public/private key

» Choose and watch your channel
 – IP Multicast at work (unicast sometimes to reduce delay)
 – IGMP join/leave group to change channel

» Purchase your VoD
 – Choose and purchase

» Use other interactive applications
 – If available
IPTV Architecture

Content Source

Management and Delivery Network

Home Network
Content Source

» All devices, processes and networks that import and store video contents

» Different sources
 – Satellite
 – RF
 – Pre-recorded tapes
 – Cable
 – Others
Delivery and Management Network

» All devices and network used to deliver video through the network to customers
 – Encoding and Streaming servers
 – On-Demand servers
 – Network backbone

» Major functionalities
 – Customer authentication/authorization
 – Customer service
 – Provide video content (normal or on-demand) via
 • Multicast
 • Unicast
Home Network

» Customer Premise Equipment
 - Anything that connects to a consumer’s home network
 • Computer
 • Set-Top Box
 • Home Gateway
 • Game Console
 • Phone
 • Others
Attacker’s Goals

» Take control of a large amount of home networks
 – Service disruption
 – Spreading worms, trojans, virus
 – Broadcast own material (for political or other reasons)

» Steal the content
 – For piracy or as simple as P2P TV source
 – For free TV/Video
IPTV Security Problems

» Home Network
» Deliver and Management Network
» Content Source
Home Network

» Understand how authentication and authorization are done
 – As easy as spoofing MAC Address

» Security vulnerability on home network devices
 – Device management
 – Device weakness
Set-Top Box Communication

» Set-Top Box downloaded boot image from a TFTP server
» Set-Top Box register itself to a middleware server
» Set-Top Box receives channel listing, application directories (other than TV)
 » IGMP Membership report
 – To indicate the current channel or join a new channel
 » IGMP LeaveGroup
 – To leave a channel
» Poweroff packet
Device Management

» Most of the devices can be managed by SNMP or TELNET
 – telnet <set-top-box-ip> <telnet-port>
 • DSLFactoryTest> LeaveMGroup (Leave’s the current multicast group)
 • DSLFactoryTest> JoinMGroup <multicast-group-address>:<mgroup-port> (Join the multicast group for Playboy™)

» Information transmitted in the clear
 – PIN (for parental control or VoD purchase)
 – Account number
Local Access to Device

» Plug in USB keyboard/mouse
 – Command shell access
 – Tools on the STB
 – Modify EEPROM
 • Works if the authentication uses STB MAC Address
 – Access to other information
 • DRM-related
Weak TCP/IP Stack

- Set-Top Boxes have limited memory and CPU resource.
- Using isic to test:
 - Every set-top box starts a listener service to take video traffic
 - `udpsic -s <streaming_server_ip> -d <stb_ip>,<listener_port> -r 1234`
 - For some set-top boxes, this is Denial-of-Service
 - Useful if you want to perform DoS on each home network from your zombies.
Other Vulnerability

» Web management interface
 – Data validation problem
 – Other standard web application issues

» Weak/default account and passwords
 – Might apply for
 • Web management interface
 • Telnet/SSH
 • SNMP
Delivery and Management Network

» Access to other servers
 – Middleware problem
 – Streaming/Encoding server problem
 – Other servers
Access to Other Servers

» Change your IP address to set-top box’s IP address range, then you’re on!

» Scan the network range and you may find:
 – Middleware Server
 – Database Server
 – Other Servers
What Can You Find?

» Passwords in spreadsheet or configuration files
» Web management interface for middleware server
» Database servers
» Movies for test
» And …..
Streaming and Encoding Servers

» RTSP Buffer Overflow
» Weak TCP/IP Stack
Real-Time Streaming Protocol

» RFC 2326 (www.rtsp.org)
» Used for video-on-demand server to deliver videos.
» Sample:
 – DESCRIBE
 – SETUP
 – PLAY
 – GET_PARAMETER
Buffer Overflow

» DESCRIBE
 rtsp://vodserver:554/mediacluster?ProviderId=company&ProviderAssetId=company00123 RTSP/1.0

» Change the URI for the DESCRIBE method to a large chunk of data, you get buffer overflow on the VoD server.

» Other location of the implementation might have the same problem
 – PROTOS for RTSP?
Weak TCP/IP Stack

» Streaming or encoding servers are good at sending data out
» They are not good at handling incoming traffic
» A nmap full-port scan could degrade the server response from 10ms to 3000ms for example.
» An aggressive scan could cause denial-of-service
Content Source

» Finding the backup
» Finding the source
 – Hijacking VSAT connection talk tomorrow!
» VOD Manager
 – Web management interface
IPTV Security Summary

» Privacy
» Confidentiality
» Integrity
» Availability
» Interoperability
Privacy

» How do Telecoms handle customer information?
- Does any personal identifiable information (PII) goes through the network when you order a movie?
- Any vulnerability on back-end billing system?

» How do Telecoms manage CPEs?
- Customer Premise Equipments, does it belong to the customer or the service provider?
- How about Set-Top Box and other related equipments?
- What’s the Acceptable Usage Policy?
Confidentiality

» Video Content
 – Is Digital Right Management (DRM) being used?
 – How about people stealing content directly from content source?
 • Remember all the backup tapes, laptops losses in 2005?
 – How are recorded contents protected?
 • Set-Top box as a DVR

» Authentication and Authorization
 – How does the system perform authentication and authorization?

» Other interactive applications
Integrity

» Can Content be modified?
 – Multicast and unicast security
 – Content source security

» Billing system integrity
 – Who should have access to billing system and how is internal fraud being prevented?

» Other systems on the network
 – How about their security?
Availability

» Can someone disrupt your IPTV service?
 – To what scale?

» Any of the IPTV device could be vulnerable to Denial-of-Service attack?
 – Buffer overflow
 – Weak TCP/IP or protocol stack implementation

» If other service is down (Voice and Data) would it take down IPTV too?
 – System dependencies
Interoperability

» There is currently no common standard on IPTV
 – Other than the use of multicast/unicast
 – May help security as a ‘diversity factor’
 • One vulnerability for one telecom may not work for another

» Standards on the work
 – ITU (ISO)
 – ISMA.tv
 – Others
Countermeasures

» Organization
» Policies and Processes
» Technology
Organization

» Security team from the beginning
 – Integrate with current security teams
 – Responsible for security program management
 • From planning to deployment to incident response
 – Secure deployment lifecycle
 • Evaluate, Test and Response

» Gap analysis
 – Understand security baseline at the beginning
 – Update status as new technologies are involved
Program and Procedure

» Change management procedure
 – Access control list

» Incident response program
 – Recognize
 – Response
 – Evolve

» Security evaluation program and procedure
 – Evaluate security in technology and deployment
Technology

» Product security
 – Secure SDLC
 – Security evaluation
» Deployment best practice
» Measure security impact to performance
» Monitor and management
 – How do you recognize an IPTV fraud?
» Bring security into standards
 – Next ITU IPTV workgroup meeting is in October
Conclusion

» IPTV has been adopted as one of the “Triple Play” strategy by Telecoms
 – Evolved into “Multi Play” in the future
 – More interactive applications planned in the future

» Risk still exist due to
 – Vulnerabilities in technology
 – Weakness in deployment
 – Incomplete or insecure processes

» Countermeasure
 – Organization, process and procedures
 – Secure deployment (mitigating technology risk)
» Question and Answer

Yen-Ming Chen
Senior Principal Consultant
Yenming.Chen@Foundstone.Com