
Smashing Heap by Free Simulation

Sandip Chaudhari
sandipchaudhari@gmail.com

Acknowledgements
Thanks to everyone in my Security Team for their support and
encouragement, especially to Jonathan Leonard, Jeremy Jethro and Nick
Seidenman.

1

Smashing Heap by Free Simulation

Abstract
This paper describes exploitation of heap overflows. Exploitation can be achieved in just one or two (one
for AIX and two for Solaris) calls to malloc after the overflow without the need of any call to the free()
function. The overflowed memory is given a value such that a previous call to free() is simulated, causing
the next malloc call to misinterpret that the memory was free'd before. We can call this technique
- Free Simulation. We overflow the heap and manipulate in-band heap information to simulate free
address space, and eventually gain control of the process execution. Though the Free Simulation technique
demonstrated in this paper has been tried successfully on AIX and Solaris, it should be applicable on all
systems.

Introduction
A recent paper [1] has very nicely outlined the generic Third Generation [2] Heap Based Overflow
exploitation techniques. A formal discussion of heap based overflows and its run-time detection and
protection schemes has been presented in yet another paper referenced as [3] in the References section.
Almost all the papers referenced in the References section [1] through [7], discuss heap overflows, that
seem to talk or provide sample code snippet where free() is being called. What if free() is never called and
the process takes in user input that can lead to a heap overflow? Is it still possible to exploit such a process
that never calls free()? The answer to this is yes, and thats what this paper is all about.

Core Ideas
As mentioned earlier, the papers in the References section describe the interesting heap overflow technique
where the free() is being called and is usually referred to as a 4-byte overwrite. The core idea is “to attack
the memory management algorithm, first (publicly?) demonstrated by Solar Designer for a heap overflow
found in the Netscape browser” [3], [1]. This class of attacks on memory management algorithms
necessarily involves pointer assignment instructions.

 Let's refer to the primitive logical constructs involving these pointer assignments that get executed on a call
to free() [4 – Section: Anatomy of a Heap Overflow Exploit] & [5].

Fig. 1
unlink frontlink

#define unlink(P, BK, FD)
{
 [1] FD = P->fd;
 [2] BK = P->bk;
 [3] FD->bk = BK;
 [4] BK->fd = FD;
 }

#define frontlink(A, P, S, IDX, BK, FD)
{
 [1] FD = start_of_bin(IDX);
 [2] while (FD != BK && S < chunksize
 (FD))
 {
 [3] FD = FD->fd;
 }
 [4] BK = FD->bk;
 [5] FD->bk = BK->fd = P;
}

2

Note: Both of the above macros are a set of logical statements that explain pointer assignments.
Either or both of these may be executed on call to free(). “P” is the pointer that has been passed to
be free'd.

What Exactly is Free Simulation?
Let's take into consideration the case of a process where there is a heap-based overflow and free() is never
called. We will see how the heap-based overflows can be very easily exploited without any call to free().
We instead trigger the exploit on a call to malloc(). It should be pointed out that the memory overwrite still
takes place by the same (or similar) primitive logical statements of pointer assignments [Fig. 1]. We will
further dig deeper and establish conditions that trigger such assignments with our control over the pointer
addresses.

Simply explained, Free Simulation is nothing but the allocation of memory on simulated free region in the
memory with our choice of length, and located anywhere we choose in the process' address space. Free
Simulation can be differentiated broadly into 2 cases:
• Arbitrary buffer allocation – The heap datastructure pointers are manipulated such that the simulated

free buffer, when allocated may exist arbitrarily anywhere in process memory address space (Free
Simulation on AIX, Free Simulation on Solaris (<40 bytes buffer))

• Arbitrary address over-write (4-byte i.e word-size overwrite) – The heap datastructure pointers are
manipulated such that the pointer assignments causes an address to be overwritten arbitrarily anywhere
in the process memory address space (Free Simulation on Solaris (>=40 bytes buffer))

A free() called on the last malloc'ed chunk triggers coalesce. Free() simply free's the chunk and consolidates
it with the yet un-malloc'ed heap region. Now, if we consider the case of free'ing a chunk which lies in the
middle of the malloc'ed chunks, then the book-keeping information of this free'd chunk has to be stored
somewhere, and of course it is maintained on the heap. Whenever the next malloc() is called, it first tries to
allocate the chunk from the existing available free'd() memory, if any, with the requested chunksize being
equal or less than the available free'd space. To exploit the malloc'ed heap overflow, the chunk header is
manipulated such that on the next call to malloc(), the heap management algorithm is confused to take this
simulated free chunk into consideration as an available free space for chunk allocation!

The following is the visual representation of the heap state at the moment of time when a number of chunks
have been malloc'ed and a few have been free'd.

3

Heap
headers

Heap in-band header with pointers to
previously free'd chunks

allocated unallocatedfree'd allocated

Pointer to previously free'd chunk

Here's an example of the usual state of heap with a few allocated chunks.

Now we represent the state of the heap after the overflow and Free Simulation.

For all of the above manipulations to be possible certain pre-conditions have to be satisfied. Let's now focus
on these pre-conditions or trigger-points that lead to Free Simulation. To simply put it, these are the
conditional statements in the malloc call that check if there is some previous or last free'd memory available
(of appropriate size) that can be used to allocate the new chunk.

if (previous free'd chunk available && requested size <= available free'd size) then ...

The above logical free conditional primitive lies at the heart of successful Free Simulation. The conditional
primitive triggers the execution of further pointer assignment instructions. Though logically it is just one
conditional statement, but it varies across systems based on the implementations of malloc(). As a proof of
concept, let's further study the Free Simulation trigger points on the AIX and Solaris systems.

4

Heap

Stack

Simulated
free chunk

Pointer to previously free'd chunk

allocated unallocatedallocated
[overflow]

allocated

Heap

allocated unallocatedallocatedallocated

Free Simulation on AIX
Please refer to Fig. 2. What follows below, is an attempt to represent the general working of the malloc()
implementation on the AIX heap.

Fig. 2
Heap – Malloc'ed chunks [MC] Heap Data Structure [HDS]

Usually, the PPF (Pointer to Previously Free'd chunk) is NULL and NFP (Next Free Pointer) points to the
last PPF (NULL), indicating availability of free memory. When a malloc is called, it checks if the value
pointed by NFP is NULL. If NFP is NULL, it writes the requested size as the next word and returns the
address of the word next to the size as the return value of malloc() call. Now we will try to understand what
happens if PPF is not NULL, which is very important for the success of exploitation by Free Simulation.

5

<__heaps+1056>:
total heap space allocated

<__heaps+1040>:
next free pointer

[NFP]

<__heaps+1064>:
total number of heap

chunks malloc'ed

<__heaps+1068>:
pointer to current

chunk [CP]

<__heaps+1076>:
pointer to the address

of pointer of
previous free chunk

[PPPF]

Actual malloc'ed memory

0x00000000 else
pointer to previously
free'd chunk [PPF]

User specified size of chunk
else real size of previously

free'd chunk

Unallocated memory

Unallocated memory
else size of previously

free'd memory

0x00000000 else
pointer to previously
free'd chunk [PPF]

Normally the heap keeps growing beyond the address space pointed to by NFP in the heap region of
memory. The PPF which is usually NULL, is now assigned the value of the address of the previously free'd
chunk! The core idea is to overflow the malloc() allocated chunk by 2 words having the first word as an
address (we will soon see what address) so that it will be now interpreted as PPF and the second word as
some arbitrary size. What should be the address value of the first word i.e. PPF, such that it may be to the
attacker's advantage? How about pointing PPF to the stack? Is this possible? Yes! In a way, we are
smashing the heap, simulating free(), and then smashing the stack!

Thus the simulated free space can be located anywhere in the process writable memory address space.The
reason this is possible is because the malloc() function trusts the address retrieved, as a valid heap address
for memory allocation. As soon as malloc returns, the user will now be returned a pointer to the address that
is pointing to the stack instead of an address on the heap. At this point we control the stack. Any string or
memory copy operation on this malloc'ed chunk would actually copy to the stack. Now the attacker has
complete control to over-write the return address and point it somewhere on the stack or to the code that has
been injected on the heap. Even a non-executable stack would fail to prevent the success of this exploit if
the attacker opts to point the return address to the heap.

Free Simulation Conditional Trigger for AIX
For AIX we can sum-up the logic for triggering Free Simulation when malloc() tries to allocate a new chunk
as follows:

if (Pointer to Previously Free'd chunk [PPF] != NULL && requested_size <= chunk_size) ... [A]
{

consider the value of PPF as address of previously
 free'd chunk and try to allocate memory on this free'd
 chunk
}

The above [A] is a mere logical summary of conditional instructions or statements. The “if()” may have
been actually implemented as “while()”. The conditional statements make it very clear that triggering Free
Simulation on AIX is quite easy.

6

Free Simulation on Solaris [size < 40 bytes]
Similar to what we did for AIX, we will simply follow the same procedure for Solaris. We will try to
represent all important and relevant parts of memory during malloc/free operations. On Solaris, 2 types of
data-structures are involved in heap management, based on the chunk size requested for. If the requested
chunk size is less than 40 then linked-lists are involved and different sections of code get executed, while
for sizes greater than 40, a binary search tree structure is maintained. In this first part we will focus on
the exploitation where sizes lesser than 40-bytes are involved.

Heap – Malloc'ed chunks [MC] Heap Data Structure [HDS]

7

Data: if allocated
else, Next Free Pointer
[NFP]: if unallocated

else, Pointer to Previous Free'd
 chunk [PPF]: if free'd

Based on bit0 and bit1 of size

0x0 or junk
[alignment word]

Actual malloc memory

Available chunk size or
allocated chunksize |OR| 'ed with

flags. [bit0 and bit1]

Available chunk size or
allocated chunksize |OR| 'ed with

flags. [bit0 and bit1]

0x0 or junk
[alignment word]

Unallocated Memory

 Next Free Pointer
[NFP]: if unallocated

else, Pointer to Previous Free'd
 chunk [PPF]: if free'd

Based on bit0 and bit1 of size

<List+4>:
Next Free chunk Pointer

or
Previous Free'd chunk Pointer

<freeidx>:
index or count of free'd chunk

in a bin's list

<flist – flist+124>:
List of free'd pointers

<Lfree>:
List of bins / nodes of flists

Exploiting heap-based overflows is slightly tricky in case of Solaris. Though linked list heap management
on Solaris is similar to AIX, we have to take into consideration some more elements that come into picture
along with malloc'ed chunks and heap data-structures [Lists] for Solaris. They can be referred to as flists or
Free-lists, which hold addresses of free'd chunks and the Lfree pointer, that points to the bins of lists of
particular sizes, available in the memory space.

The decision to allocate or consider the previously free'd chunk of memory for allocation is based primarily
on the bit0 and bit1 of the size word on Solaris. The size is specified in bytes and we get the last 2 bits free.
• bit0: 1 if chunk is allocated else 0.
• bit1: 1 if a previous block has been free'd in local list of the bin else 0.

When malloc allocates memory at the address pointed to by the Next Free chunk pointer, it checks for the
state of flags in the size-word's bit0 and bit1. If both are zero, it allocates the chunk of the requested size
with OR'ed bit0=1 flag i.e. literally requested_size+1. I would like to point out that whenever the size of a
chunk is requested, it may be modified for alignment. After it is aligned, it is ensured that last two bits are
0,0, for further updates based on the chunk's state. The address of start-of-chunk+8 is returned as the return-
value for malloc where data may be written.

The freelists are structured like lists in bins of various sizes. There may be multiple bins, each with its list
that can be of the same size. In case malloc finds that bit1's state is “1” it considers that there is previous
free'd memory chunk. The word next to the immediate next word is considered as the address pointing to
the previously free'd chunk. Malloc checks the size of this previously free'd chunk against the requested
size. If the requested size is less, malloc allocates this previously free'd chunk, and returns the address for
data write with the bits set appropriately in the size-word in the chunks' header.

We can simulate free() and exploit a heap-based overflow on Solaris on a call to malloc in similar way as
we did for AIX. In the case of Solaris, we overflow the allocated chunks' boundary such that the bit1 of the
size in the header of next chunk is set to “1” and the word next to the immediate-next word can be given the
address where we would like to overwrite on the next write operation. Two calls to malloc() are needed
before the address can be overwritten on the stack. In the first call there is allocation, then a buffer copy
operation leading to the overflow. On second call to malloc(), the Next Pointer is accessed from the HDS
and the overflown address is read into the Head Data Structure [HDS] as the future Next Pointer. This
results owing to satisfactory pre-conditions for Free Simulation.The second copy operation executes safely.
But on any future malloc() call, the NEXT operation would return the address of our simulated free buffer.
This buffer can be located anywhere as we please, on stack or heap or any writable region of process'
memory address space. Memory is allocated with reference to this Next Pointer address retrieved from
HDS. Hence, if this address is pointing to stack, memory will be allocated on the stack and any write
operation in future would be directly taking place on this allocated memory on the stack.

As before in AIX, again, the simulated free space can be located anywhere in the process writable memory
address space.The reason this is possible is because the malloc() function trusts the address retrieved, as a
valid heap address for memory allocation.

Free Simulation Conditional Trigger for Solaris [size < 40 bytes]
For Solaris we can sum-up the logic for triggering Free Simulation, when a malloc tries to allocate new
chunk as follows:
if (size.bit1 equals 1) [B]
{

After size checks, consider address next to immediate-next word as previously free'd chunk
and assign it to the Next Pointer of Heap Data Structure. Again, after size checks this
simulated free space will be used to allocate memory on any call to malloc() in the future.

}

As stated before in the case of AIX, the above [B] is a mere logical summary of conditional instructions for
Solaris. The conditional “if” is logical and it may be a conditional “while” in actual implementation.

8

Free Simulation on Solaris [size > 40 bytes]
As pointed out in Solaris [size<40 bytes], for sizes greater than or equal to 40 bytes on Solaris, a binary
search tree [splay-tree] has been implemented to manage heap. Such heap-based overflows for Solaris,
involving tree-data-structures have been described in “Once upon a free()” paper [8] published in Phrack
magazine. In this paper, exploitation has been demonstrated by calls only to malloc() that further calls
realfree(). The focus is on creation of the fake-chunk that leads to 4-byte overwrite when the heap-
management data is manipulated.

The paper also clearly mentions that -- “Overflowed chunk must not be the last chunk”. Until this point
in the paper, we have seen how the last malloc'ed chunk can be overflown and the exploit can be triggered.
Even in this case, we would focus on the same technique for sizes greater than or equal to 40-bytes on
Solaris. We follow the same procedure as sescribed in [8] except certain minor differences. We will
simulate free() by overflowing the last malloc'ed chunk and trigger further exploit operations using the 4-
byte overwrite technique. As in [8], we will focus on pointer assignments that take place in free(). In the
case of Solaris, free() or realfree() is called internally in malloc(), due to delayed-free policy. We take
advantage of the delayed free call and achieve 4-byte overwrite in the realfree()'s coalesce operation. This is
similar to the exploit mentioned in [8] but differing by overflowing the last malloc'ed chunk.

As mentioned in Solaris [size<40 bytes], we still use the same bit0 and bit1 to trigger our exploit. Though
many other ways are possible to exploit heap-based overflows, we have chosen this one because it seems to
be one of the easiest ways and bypasses the “chunk before last chunk” limitation mentioned in [8]. The
exploit can be achieved in just 2 calls to malloc. The first call obtains a chunk, then some operation leads to
an overflow. In the overflow, we fake the header of next fabricated chunk and with the size such that bit0 is
“0”. On the second call to malloc() the 4-byte overwrite is triggered. On Solaris, the next pointer is
calculated based on the size in the header. We take advantage of this and make the size greater than -4 but
lesser than 0. Further more we create our fake chunk starting from the next word after the size word. The
NEXT(p) macro gets confused due to manipulated size and returns the next word as the header of the next
chunk! In this next fake chunk, we make sure size-bit0 is “0” and bit1 is “1” indicating that there is a
previously free'd chunk in contiguous memory. When realfree reaches the last overflown malloc'ed chunk, it
finds the last chunk has been previously free'd (Free Simulation) and then further finds the next-chunk is
free too. This triggers the coalesce operation. We make sure, that the chunks involved are interpreted as
list-chunks and not tree-nodes by assigning left-node pointer '-1' as its value. Manipulation of the NEXT(p)
macro further helps us to by-pass the bottom chunk check.

Digging Deeper
We will refer to the Open-Solaris site [9] for source code to better understand the exploitation. Let's start by
looking at the important tree data-structures involved.
Source: mallint.h
 80 /* the proto-word; size must be ALIGN bytes */
 81 typedef union _w_ {
 82 size_t w_i; /* an unsigned int */
 83 struct _t_ *w_p[2]; /* two pointers */
 84 } WORD;
 85
 86 /* structure of a node in the free tree */
 87 typedef struct _t_ {
 88 WORD t_s; /* size of this element */
 89 WORD t_p; /* parent node */
 90 WORD t_l; /* left child */
 91 WORD t_r; /* right child */
 92 WORD t_n; /* next in link list */
 93 WORD t_d; /* dummy to reserve space for self-
pointer */
 94 } TREE;

9

Few important macros.
Source: mallint.h

 98 #define RSIZE(b) (((b)->t_s).w_i & ~BITS01)

 112 /* set/test indicator if a block is in the tree or in a list */
 113 #define SETNOTREE(b) (LEFT(b) = (TREE *)(-1))
 114 #define ISNOTREE(b) (LEFT(b) == (TREE *)(-1))

 121 #define NEXT(b) ((TREE *)(((char *)(b)) + RSIZE(b) +
WORDSIZE))

Sections of functions relevant to our exploit
Source: malloc.c – realfree()

 511 /* see if coalescing with next block is warranted */
 512 np = NEXT(tp);
 513 if (!ISBIT0(SIZE(np))) {
 514 if (np != Bottom)
 515 t_delete(np);
 516 SIZE(tp) += SIZE(np) + WORDSIZE;
 517 }

Source: malloc.c – t_delete()

 756 /* if this is a non-tree node */
 757 if (ISNOTREE(op)) {
 758 tp = LINKBAK(op);
 759 if ((sp = LINKFOR(op)) != NULL)
 760 LINKBAK(sp) = tp;
 761 LINKFOR(tp) = sp;
 762 return;
 763 }

Note the above highlighted assignments in orange (747 and 748) are the two word assignments, where user
controlled data (8-byte overwrite in this case, but we will still refer it as 4-byte) can be injected. We can
summarize above operation in instructions as follows:
0xff2c7808 <t_delete+52>: st %o0, [%o1 + 8]
0xff2c780c <t_delete+56>: st %o1, [%o0 + 0x20]

10

Now, let's represent the overwrite involving heap-data manipulation diagrammatically.

Malloc'ed heap chunk and overflow

In the figure shown above we have 2 structures involved: t1.t_* and t2.t_*. Following are the details:
t_s : size. We assign t1.t_s to - 2 so that np = NEXT(p) will return np pointing to t1.t_j and bit0 is '0'

for both t1.t_s and t2.t_s.
t_j : as every pointer in this structure occupies 2 words owing to alignment logic, we can consider all t_j as

junk.
t_p : pointer to previous node, can be junk for t1.t_p, and t2.t_p can be the address with which the return

address on the stack is to be replaced.
t_l : can be junk for t1.t_l but must be “-1” for t2.t_l, thus guarantee that malloc() would not interpret the

node as a tree node but would interpret it as a list node.
t_r : can be completely ignored and hence can be junk.
t_n : t1.t_n can be junk but t2.t_n will be the address we would like to overwrite – 8.
t_d : may be ignored and can be junk for both t1.t_d and t2.t_d.

As each pointer associates an extra word with it, all those ignored words come in handy for practical use in
our exploit. We simply overlay our exploit data of next-node-structure over these ignored junk words! It
enables the feasibility of a nice and clean exploit. The same size may be manipulated such that the overlay
of our fake-chunk header can be at some different location.

11

t1.t_s [> - 4 < 0]

Allocated memory

Unallocated memory

t2.t_d

t1

t2

t2.t_st1.t_j
t1.t_p t2.t_j

t2.t_pt1.t_j
t1.t_l t2.t_j

t2.t_lt1.t_j
t1.t_r t2.t_j

t2.t_rt1.t_j
t1.t_n t2.t_j

t2.t_nt1.t_j
t1.t_d t2.t_j

Free Simulation Conditional Trigger for Solaris [size > 40 bytes]
We can sum-up the logic for triggering Free Simulation when a malloc() tries to allocate a new chunk and
calls realfree and further tries to coalesce. The logical steps involved are as follows:

1. if (size.bit0 equals 0) [C]
 {

consider this as a free chunk, check if next chunk is also free and if coalesce is possible.
 }
2. if (next chunk size.bit0 equals 0)
 {

Next chunk in contiguous memory block is free proceed with coalesce.
 }
3. size should be such that NEXT(p) calculation will return our fake-chunk as next chunk.
4. The returned fake chunk should bypass is-bottom check [np != Bottom]. Would be automatically

taken care of.
5. The value of left-node pointer t_l of fake chunk must be '-1' for interpretation as list node rather

than tree node.
6. If (value of left-node equals -1) [D]

{
interpret it as list-node and proceed further with coalesce operation involving pointer
assignments.

 }

As stated before for AIX, the above [C] and [D] are mere logical summaries of the conditional instructions
for Solaris. Step [C] indicates Free Simulation. The remaining steps including [D] indicate the trigger to
coalesce, the fake-chunk creation, and the coalesce operation that involves pointer assignments for the
linked-list.

12

Advantages of Free Simulation
1. Relatively easy to exploit.
2. Provides a consistent and generic model to pursue the heap overflow-based exploits.
3. For processes / applications where free() is never called, Free Simulation may be the best exploitation

technique.
4. Usually data-write follows after a chunk from malloc has been obtained, favoring Free Simulation

exploitation.
5. Some heap algorithms do not actually free the memory at the free() call. This delayed/lazy free()

behaviour is feasible due to certain supportive free-structures like free-list / flist (Solaris). Whenever a
malloc() is called, it internally calls free() or rather the realfree() (especially on Solaris) that actually
free's the memory. Hence the focus on malloc() calls might provide an easier approach and save time.

6. Usually, malloc() and realloc() calls are called more frequently compared to free().
7. Exploitation can be triggered at a considerably earlier stage in a process's life cycle because of the fact

that the malloc() (memory allocation) always precedes free().
8. Enables arbitrary overwrites anywhere in process memory regions including stack, heap, function

pointers, and Procedure Linkage Table.

Limitations of Free Simulation
1. Usually works well and easily when the overflow occurs in last malloc'ed chunk. For overflows in in-

between malloc'ed chunks, depends on implementation of the memory allocation algorithm.
2. Needs guesswork to overwrite the addresses , especially for a fake chunk creation.

Preventive Measures
1. Best preventive measure is at the code-implementation level itself by altogether avoiding or by careful

usage of function calls that may potentially lead to the memory overflows.
2. At the system level, protection policies like non-executable data regions (that includes the heap and the

stack, on AIX – sedmgr) can make heap based overflow vulnerabilities more difficult to exploit.

13

Conclusion
The need of heap in-band information (metadata) is a necessary evil for practical and efficient malloc
implementation. Let's summarize the logical conditional primitives for Free Simulation on both the AIX and
the Solaris systems:

Free Simulation Conditional Triggers
AIX if (Pointer to Previously Free'd chunk [PPF] != NULL ...[A]

 && requested_size <= chunk_size)
{

consider the value of PPF as address of previously
 free'd chunk and try to allocate memory on this free'd
 chunk
}

Solaris

[size < 40]

if (size.bit1 equals 1) [B]
{
 consider address next to immediate-next word as previously
 free'd pointer and try to allocate memory on this free'd chunk
 after size checks.
}

Solaris

[size >= 40]

1. if (size.bit0 equals 0) [C]
 {

consider this as a free chunk, check if next chunk is also
 free and if coalesce is possible.
 }
2. if (next chunk size.bit0 equals 0)
 {

Next chunk in contiguous memory block is free proceed
 with coalesce.
 }
3. size should be such that NEXT(p) calculation will return our

fake-chunk as next chunk.
4. This returned fake chunk should bypass is-bottom() check.
5. The value of left-node pointer t_l of fake chunk must be '-1' for

interpretation as list node rather than tree node.
6. If (value of left-node equals -1) [D]

{
interpret it as list-node and proceed further with coalesce
operation involving pointer assignments.

 }

14

References
1. http://md.hudora.de/presentations/summerschool/2005-09-21/vansprundel-ctt-heapoverflows.pdf

- Generic Heap Overflow Exploitations.
2. http://www.blackhat.com/presentations/win-usa-02/halvarflake-winsec02.ppt – Third Generation

Exploitation.
3. http://www.openwall.com/advisories/OW-002-netscape-jpeg/ - Solar Designer
4. https://www.usenix.org/publications/library/proceedings/lisa03/tech/full_papers/robertson/robertson_ht

ml/ - Run-time Detection of Heap-based Overflows (Anatomy of a Heap Overflow Exploit, Logical
Constructs).

5. http://doc.bughunter.net/buffer-overflow/heap-corruption.html
6. http://www.w00w00.org/files/articles/heaptut.txt
7. http://cansecwest.com/csw04/csw04-Oded+Connover.ppt
8. http://www.phrack.org/phrack/57/p57-0x09 – Once Upon a free()
9. http://cvs.opensolaris.org/source/ - Solaris source code on OpenSolaris website

15

