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Introduction

Claim (AV industry)

« We detect 100 % of Malware even the unkown
ones! »




anti-virus pour
protection

S connus et inconnus !
OutbrealcShicld « Deux modules antivirus »

Protection a 100% contre |
backdoors, spywares, chevaux de T,

€5 virus, vers,
roie, dialeys » Mise

a jour horaire




Introduction

Theoretical result (Cohen - 1986)

« Viral detection is an undecidable problem »

e There is no program which would detect every virus.



Introduction

Fact (Attackers’ reality)

« Glve me a so-called perfect defense or securi
tool ... and | will find how to bypass it somehow,».

e A lot of examples during those recent years (e.g. iPhone
security).



Introduction

Who is right? Who is lying? Is there such thing as
« winable (computer) war »?

The answer depends on the kind of attack

o Wide/Internet-size, popular/generic attacks...

Best AV software may be right ... but the price to pay is higlow
product, high false alarm sensitiveness, frequent updgtes

o Specific/targeted or small-size attacks

Attackers are right. AV are totally wrong.
At the present time, the second case Is the most
worrying one.



Kaspersky Antivirus ~ Déecembre 2007
Fréquence de mise a jour de la base de signatures virales




Introduction

he real-life situation is worsening.
Orphan diseases versus large epidemies.

It Is still and 1t will be always possible to
defeat any antivirus technigue.
Basic but critical fact:

o AV software are commercial product before
anything else.

Let us explain why and how attackers’ could
design their malware Iin the future.






Introduction

This talk is not to promote malware writing!

Aim of the talk:
o Understand how the threat is bound to evolve.
0 Be able to understand why AV vendors are wrong.

o Understand the tools of a « true » computer warfare
(or cyberwar).

2 How to prepare prevention and defense.



Summary of the talk

Introduction.

Mathematical concepts for dummig@sry ...

but it will be not too painful).

Basic principles of malware design.
Some examples/cases.

Conclusion.



A tew mathematical concepts

| nformation theory
o Central concepts entropy.
o Useful to characterize the amount of information.

o Any information source can be characterized by its gyt{program,
language, data...).

o For secret quantities, define the amount of secret anoértainty.

Main tools
o Probability theory and statistics.
o Testing simulability (Filiol - 2007).

Tell me which statistical tests you use and my datalvalave accordingly
to bypass your detection.

o Cryptology and steganography.



A tew mathematical concepts

Complexity theory

o Central concepts # of operations to solve a problem.

o Problems are classified in complexity classes.
Polynomial class (Px « easy » to solve.
Non deterministic polynomial class (NB) « hard » to solve.
NP-complete= hardest problems in NP (« very hard »).

Even higher complexity classek, @ndll; classes witlx; =
NP andZ, = NPYF..)).

o In practice, only the P class is computable (from sdsdn a few
hours however?!).

Main tools: combinatorics and discrete maths.



A few mathematical concepts




A tew mathematical concepts

Computability theory
o Central concept> Turing machine.

o Decide whether there exists a Turing machine (e.qg.
a program) which can compute a given problem.

2 Some problems are not computable (the
corresponding Turing machine never stops).

o Consequently the problem has no solution!
o Famous example: the virus detection problem!

Main tools: formal grammars and languages.



Basic Principles of
(undetectable) Malware Design




Basic Principles of Design

Build your code in such a way that the
problem is (for the AV software):

o Either « hard » to compute (NP and above),
o Or 1s not computable.

Exploit the fact that AV are commercial
products only.

o AV just devote a few hundreds of cycles only to
analyse= just take more
(t-obfuscation — Beaucamps — Filiol 2006).



Basic Principles of Design (2)

Fool the detection algorithms.

o Any detection algorithm can be modelled as a
statistical testing (Filiol — Josse 2007).

o Use testing simulability (Filiol 2007).

0 Use « malicious » cryptography and « malicious »
statistics (Filiol — Raynal CanSecWest 2008).

0 Use code armouring to forbid code first analysis
Bradley codes (Filiol 2005).

Imagine new forms of malware.
And combine all the previous principles!



Basic Principles of Design (3)

At the code level, think both in terms of:
0 sequence based detection,

o AND behaviour-based detection.

o You have to bypass both of them.

o Example of failure: GpCode (2008).

Analyze the target (user, AV software,
environment...).



A Few Examples and Cases
... among many possible ones




A Few Examples and Cases.

Let us present a few (among many)
examples and cases drawn from

0 Legal cases (forensics analysis).
0 Real targeted attacks analysis.
0 Research and experiments.

What you MUST keep in mind:
o |Successful attack = Code + attack protocol.

o Considering the code only can be worthless.
In fact think like a military/intelligence guy.




K-ary Malware
or Spliting the Viral Information




K-ary malware.

Starting idea : a real-case (2004)

» The malware installs three variants of
itself in memory.
* Variants are light polymorphic versions

of A.

* Variants are constantly refreshing
themselves (kill, regenerate, mutate
and soon...).

y 3
v

v
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Everytime a AV manages to kill one of the variants, ttteecs are reinstalling it.




K-ary malware (formalization - Filiol 2007)

Definition: family of k (non necessary all
executable) files whose union is a malware and
whose action is that of a malware. Every part
looks Innocuitous.

Two different types:
o Parallel k-ary malware.
o Serial k-ary malware.

Possible to combine the two types:
o Serial/parallel k-ary malware.




K-ary malware (formalization)

For every type, three distinct classes:
0 Subclass A (dependent parts).

0 Subclass B (independent parts).

0 Subclass C (weakly dependent parts)

Validated through different PoC:

o OpenOffice Virus Final_Touch (de Drézigué at al. 2006).
o PoC_Serial (Filiol 2007) with £ k < 8 (any subclass).
o PoC_Parallel (Filiol 2007) with k = 4 (any subclass).

No detection whatever may be the AV software!




K-ary malware (formalization)

The detection of k-ary malware has been proven to
be at least NP-complete.

o NP complete if interaction Boolean functions are
deterministic.

It Is possible to design still more sophisticated
codes:

o Interaction functions can be non deterministic.
o Use combinatorial schemes (e.g. threshold schemes).

Current research work focus on those latter cases.



The Pb__Mot Malware
or Generalized Metamorphism.




Basic Principle.

Is Is possible to design a code which cannot be
detected ever?

o The answer Is positive provided that you use suitable
mutation metamorphic technigues.

o Consider formal grammars and formal languages.

o Model your mutation with formal grammar in such a way
that detection has to face an undecidable problem.

o Experimentally validated with respect to sequence-dbase
detection.

o Current work with respect to behaviour based detection.



Once again mathematics (sorty again).

Alphabet* ={a;, a, . . ., a}.
A chain is a sequence of symbols Bf: b,;b,b....
0, With b. J X and m> 0.

f AIs a set of chains defined ov&r we define the
set

A*={XX,...x|Nn>0, X, X, . . ., x L1 A}.



Formal Grammars.

A formal grammar G is the 4-tuple G = (N,T, S, R) where
o N is a set of non-terminal symbols;

o T is an alphabet of terminal symbols withNT = (J;

o S N is the start symbol,

0 R is a rewriting system, that is to say a finite setubé¢s
RO(T ON)*x(TLN)* suchthat (u, vk R=ull
T* (we cannot rewrite chains which contain only terminal
symbols).

A pair (u, v)U R Is a rewriting rule or production, denoted
u::=vas well



Rewriting Systems

A rewriting system R defines a rewriting relatiosy
defined as
rus=rvsiff (u,v)OR and (r, s} Z* x X*,
We can build rvd] Z* directly from the chain rugl *.
Example:
o Take ={A, a, b, c} and R ={(A, aAa), (A, bAb), (&),
(A, aca)}.

A = aAa

aAa—r aaAaa

aaAaa— aacaa



Formal LLanguages

A formal language is the set L(G) is the set of

“words” generated with respect to the formal
grammar G.

From this point of view, natural languages and

programming languages are just instances of a
wider concept.

But there exist far more complex grammars.



Chomsky Classitication

Four main classes of grammars:

o Class 0 grammars (@ree grammarks Generate languages decided
by Turing machines.

o Class 1 grammars (@ontext-sensitive grammarsSize of words
cannot decrease. This class contains all natural laysgua

o Class 2 grammargg@ntext-free grammajsSubsets of this class
contain programming languages.

o Class 3 grammars (oegular grammark Productions are in the
form of X ::= x or X ::= xY with (X,Y ) O N2 and x( T*.

There exist other (still more complex) formal grammars.



Formal Definition of Code Mutation

Consider the set of x86 instructions as the working atheh.

Instructions may be combined according to (rewriting@s
that completely define every compiler.

This set of rules can be defined as a class 2 formalmam
(assembly language).

Implementing a polymorphic engine consists in genegadin
formal language: the polymorphic language with its own
grammar.

o = E.g. Polymorphic grammar.



Trivial Polymorphism.

Take the grammar G = {{A,B}, {a, b, c, d, X, ¥}, S, R}

Instructions a, b, ¢ and d are garbage code whileuctsbns
X and y are the decryptor’s instructions. R is defingd a

o Si=aS
o A:x=aA
o B:=aB

bS
bA
bB

cS
cA
cB

XA
dA
dB

yB

This polymorphic

form of

anguage is made up of every word in the

{a, b, c, dfx{a, b, c, d¥vy{a, b, c, d}*



Formal Definition of Code Mutation (2)

Every of the language words corresponds to a mutated
variant of the initial decryptor.

It Is “easy” (e.g for an antivirus) to determine that thhard
abcddxds not in this language with respect to G, contrary to
the wordadcbxaddbydab

The critical issue for any antivirus is then to have an
algorithm which is able to determine whether a “word” (a
mutated form) belongs to a polymorphic language or not.

What is the detection complexity (or language decision)?



‘ Langage Decision Problem

= To solve the language decision problem, we can
consider

o Deterministic Finite Automata (DFA),
a2 Non deterministic Finite Automaton (NFA),
o Turing machines.




Langage Decision Problem vs Detection

If an antivirus embeds an automaton A that can solve the
(polymorphic) language decision problem with respee to
given polymorphic grammar, then detection is possible.

Two critical issues are then to be considered:

o the relevant complexity of the automaton,
o every time the polymorphic grammar is changing, the antsvi
software must be upgraded with a new automaton whiclildethe
new polymorphic language.
Metamorphic techniques are more powerful than
polymorphic ones since every new metamorphic mutation
produces a new grammar and a new word generated by the

latter at the same time.



‘ Formal Definition of Metamorphism

= This definition describes the fact that from one metammrph
form to another, the virus kernel is changing: the virus
mutates and changes the mutation rules at the same time.

= Detecting such sophisticated metamorphism is equivatent t
solve the language decision problem twice.




‘ Language Decision Complexity

= Then the choice of underlying grammar Is essential

when designing a polymorphic/metamorphic engine.
It has a direct Iimpact on its resistance against its
potential detection.




The PoC Pb_Mot Metamorphic Malware.

Proof-of-concept of undetectable metamorphic malware.
Based on the « Word problem » defined by Post in 1950.

o One of the most famous undecidable problems.

o Are two finite words r and s ovek equivalent or not, up to a
rewriting system R.

Equivalently, it consists in deciding whetheex,* s or not.



Tzeitzin Systems.

Smallest undecidable semi-Thue systerpaid T;:

(ac, ca), (ac, ca),

(ad, da), (ad, da),

(bc, cb), (bc, cb),

(bd, db), (bd, db),

(eca, ce), (eca, ce),
(edb, de), (edb, de),
(cca, ccae) (cdca, cdcae),

(caaa, aaa),

(daaa, aaa)



The PoC Pb_Mot Metamorphic Malware (2).

Use formal grammars whose rewriting system contains a
Tzeltsin systems.

o = the code mutation engine will be undecidable as well.

The engine’s rewriting (mutation) rules change from
mutation to mutation.

Two main constraints are to be satisfied:
o the rewriting system of ¢scontains an undecidable Thue system;

o every word (hence a grammar) in(G,), during the ' mutation
step, contains an undecidable Thue system as well.

The rewriting system of (G,) grammars are coded as
words on the alphabet (N T)*.

Detection of PoC Pb_Mot is undecidable



Discussion

What about the detection of PoC Pb_mot
metamorphic codes?

0 Seqguence-based detection fail since mutation is based on
an undecidable problem.

o On execution, once the code is unprotected, it can be

analysed. But antivirus and virus do not to play theesa
game.

o With t -obfuscation (Beaucamps - Filiol, 2006),
metamorphic codes can delay their own disassembly in
an arbitrary time , more than any antivirus (commercial
products) can accept.



Discussion (2)

The theoretical approach with formal grammars is a neansing

way to systematically distinguish efficient technigdi®sn non trivial
or unefficient ones.

Until now, known (theoretically detected) metamorploces refer to
rather naive or trivial instances for which detectiemains “easy”.

Some behaviours may represent useful invariant that dmaild
considered by antivirus in the future (behaviour-blasdetection).

Nest step is behavioural polymorphism/metamorphismecod
behaviours both at the micro- and the macro level would gadrom
replication to replication.

Systematic exploration of subclasses of grammar is aasastwell.



Optimized worm propagation.

...0r how to design the perfect botnet.




Optimized worm propagation.

How to design a stealth but fast enough worm to
subvert an unknown Internet-sized network?
o Design of a two-level malicious network.

o Use some combinatorial structure to spread and
manage the worm.

o The worm does not require amypriori knowledge
about the network.

The level of connection overhead (wrong, useless
worm connections) is optimally lowered.

PoC and SuWast (simulator) (Filiol and al. 2007)



General Worm Strategy.

The target network is set up into a two-level hierarchy.

o Locally, « malicious » P2P networks are set up (lowdwoeks;
local maganement of dynamic address hosts).

o Every malicious lower network also manage a singlecslkat
adress.

o At a macro level, a malicious network of static IP aafs$es is set
up (worm upper network).

o Globally, a graph structure G to manage fixed IP asisis only
(maintained at the attacker’s side).

The basic tools to manage the different networks aré DH
(Dynamic Hash Tables).



General Worm Strategy (2).

These two structures are connected at the fixed IP
addresses’ level.

The attacker monitors data sent by every infected machi

The overall, upper level topology of the malicious network
IS managed at the attacker’s level through the graph G.

The two-level structure aims at making the worm spread as
Invisible as possible.

o From one given node, the worm spreads to nodes that used to
communicate with it only.

o EXisting previous connection is considered as a “trusétron.



e —
——
T
% DHT: T

e

N =

‘ General Worm Strategy (2).




Worm Spread Mechanism.

This step aims at finding IP addresses to infect.

With a probability g < 0.1, generate a random IP adress.
Then, the worm tries to infect this random IP address.

The worm then locally looks for existing addresses teatf

o ARP table and directory of given software applications
Internet browser, antivirus, firewall...

o Identification of machines already connected to thalloc
machinenetstat, nbtstat, nslookup, tracert

Attempt to spread to these addresses and update DHT
structures if successful.

Information is sent to the attacker’s monitoring maehi

The worm determines whether a target is already infecteubbr



Collected Data.

To monitor the worm activity and to evaluate Its
efficiency, the attacker use some indicators.

The corresponding (directed) graph structure G
(describes the worm upper network) is defined as
follows:

o each fixed IP address is a graph node,

2 node I Is connected to node | if machine j has been
Infected by machine i .



Collected Data (2).

Let us suppose that machine | successfully managed
to infect machine j at time t. The following data are

collected:

IP address of machine i .

IP address of machine | .

A single fixed IP address.

The time of infection.

The infection mark (machine | was already infectedat) n

o o O O O



Managing the Infected Network

Once the worm has infected any possible machine, the
attacker has to control, set up or modify the worm bedravi
(botnet admin).

o DHT structures must be managed in order to avoid aoch
Increase of their size.

o Systematically, the DHTs of a given machine | dynaniycalanages
and keeps only the IP addresses corresponding to madecestly
connected to machine i .

Use of a node identification system based on node II? bui

from the local IP address and the XOR metrics.



Managing the Infected Network (2)

Use of a weighted measure for every |IP address In
the DHTSs tables. Let us consider DK@t machine

.
o For every other IP address j in DHTlet us denote dhe

(xor) distance between machines i and ] gritie Iast
connection time (in seconds) between machine i and | .

o Consider the following weight:

So, DHT, permanently self-updates in order to keep
only the IP addresses with lowest weight.w



The Botnet Graph

The aim I1s to model the connections between fixed
addresses by means of a directed graph G.

o nodes of G, denoted (i< i< N are representing fixed IP
addresses (generally a server) ;

Entries of the incidence matrix of G are defined by:
o a; = 11f computer ] has been infected by computer |
o Otherwise g = 0.



Managing the Infected Network (3)

Search for vertex cover within the graph.

Definition: Let G a undirected graph (V , E). The
vertex cover is a subset\bf the vertices of the
graph which contains at least one of the two
endpoints of each edge:

V'OV:0O{a, b}0OE,allV'orbldV'
The vertex cover problem is NP-complete.
But efficient heuristics do exist (Dharwadker 2006).




Managing the Infected Network (4)

Let us consider the following toy graph.

The node subset {2, 4, 5} Is a vertex cover of G.
Moreover, it is the smallest possible one.



Managing the Infected Network (4)

1.

From the data collected the attacker will first try to itlgna vertex cover.

The attacker looks for a vertex cover ¥ {n, , . . ., n }. He may consider
a partial subgraph.

The information that intends to adapt the worm behavisgent to nodes
n, OV with1l < k, only.

Each of the nodes;rilV " will then spread locally to other nodes of the
graph according to a suitable ordering (for exempléh@previous node 3
can be updated either by node 2 or node 4, but only nod#)2

The use of a vertex cover set minimizes the number of canmations
between nodes while covering all the nodes quite simultiasigo

From the network defender’s side, the problem is far ncoraplex since
he does not have the collected data in the same way therdetidoes.



Simulation and results

Design of Suwastuper Worm Analysis and Simulation
Tool).

Non public simulator.

Powerful simulation tool of complex, heterogenous
networks (clients, servers, routers...), enablingusations

of network attacks in a controlled environment at packet
level.

Large-scale simulations (up to a 60,000-host heteremaes
network on a single 2 GB machine).

Possibility to interconnect such machines to simulate
heterogeneous networks of millions of hosts.



Simulation and results (2)

Two metrics have been used:
o the Network Infection Rate (NIR):

NIR = # of mfectlid hosts

o the Overinfection Rate (OR):

OR = # of infection attempts of already infected hosts

# of infectec host:



NIR and OVR (%) on a 100-server network
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Simulation and results (3)

Three essential results are noticeable:

o the parameterghas a significant impact on both the NIR
and the OR. The casg p 0.04 is optimal, provided that
the server neighborhood parameter is not to large;

o the NIR is systematically greater to 90 % if<3a (server
neighborhood parameter), most of the results being closer
to 99 %.

o the server neighborhood parametdnas a more
significant impact on the OR. Optimally, we have

a [3, 6].



Conclusion

Quite an infinite number of doing undetectable
malware.

What is the level of threat nowadays?
o Quite impossible to say.

o Potentially high for targeted attacks (intelligence
agencies or military forces in some countries).

o Probably low to medium for other attackers... until now.

o Require skilled malware writers with a good level both
In mathematics, computer science and programming.



Conclusion

The solution to fight against those malware of the
future 1s no longer technical and will never be!

Only accurate and strong security policies are
likely to be the best protection.

o Avoid to be infected or you are dead!



Thanks tor your attention

Have a nice Hack.lu conference
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