Hacking printers: for fun and profit
Andrei Costin
Author of MFCUK
 - MiFare Classic Universal toolKit
Day-time programmer (after-8pm type of hobbyist hacker)
 - Not part of printing industry though
Generally interested in:
 - Programming/hacking: RFID, GSM, biometrics, embedded
 - Almost everything which:
 - Is connected to networks/communications lines
 - Have smart-cards (contact and contactless)
 - Have crypto involved somewhere down the line
 - Is or should be secure
 - Corporate/Enterprise IT support software & security
 - TEMPEST and ISS
Abstract

- While more and more new devices (routers, smartphones, etc.) are getting connected to our SOHO/enterprise environments, all-colour hats are getting plenty of focus on their security: defend and harden on one side; exploit and develop malware on the other.
- However, a special class of network devices (specifically network printers/scanners/MFPs), which are networked for more than 15 years, are constantly out of the modern security watchful eye.
- And even though we entrust them even the most confidential documents or the most sacred credentials (LDAP, PINs, RFID badges, etc.), we don’t realize closely how weak and unsecured they are, despite the few minor security bulletins that started to pop-up here and there in the recent few months.
- In this presentation, we will try to analyze the reasons why hacking network printers/MFPs is a reasonable and accomplishable idea. Also, we will take a look at current state of (weak) affairs in the vulnerability and security research available. Then we will try to envision types of possible exploitation scenarios, backed-up with a printer remote-exploit demo. We will conclude the presentation with possible solutions and what can be done to protect ourselves as well as our network environments.
Disclaimer*

- No Warranties or Liability. Information is provided as-is, though every effort has been made to ensure the accuracy of the information presented. Author of the presentation is not legally liable under any circumstances for any damages such as but not limited to (including direct, indirect, incidental, special, consequential, exemplary or punitive damages) resulting from the use or application of the presented information.

- Unless explicitly noted in forms such as but not limited to "the XYZ Company says", etc., the opinions expressed in this presentation are solely and entirely my own. They should not be interpreted as representing the positions of any organization (past, present, future, existent, non-existent, public, private, or otherwise) with which I may or may not have been, are or are not, or will or will not be affiliated at some time in the past, present, or future.

- All trademarks and registered names are the property of their respective owners. All the effort has been made to link to the original material used as exhibition items in the presentation, and those items are property of their respective owners.

- This presentation: © 2010, Andrei Costin. Released under: [Creative Commons Attribution-NonCommercial-ShareAlike license]

*big fat one – because everybody loves fineprints
This presentation is about:
- Hacking “the PC inside printers/MFPs”
 - Why would someone hack a printer/MFP
 - How would someone hack “the PC inside printers/MFPs”?
 - How easy/feasible is MFP firmware creation and exploitation
 - How to protect yourself and your so-much-loved MFP?
- Laying foundation for further community security research/development/PoC

This presentation is NOT about:
- Printers’ display hack (RDYMSG, OPM SG, STMSG)
- Printers’ embedded web-server hacks (mostly not)
- Printers’ SNMP configuration hacks (mostly not)
- Exhaustive guide to hack every and last MFP (not yet!)
MFPs Exploitation – Why?

- First, my term for MFP = Mfp, Fax, Printer
- Many would ask “Why would you exploit an MFP?” – answer derives from questions below:
 - How many persons would expect their MFP infected?
 - How many users/admins/security-auditors audit and hard-secure their/network MFPs?
 - Even if they do, do MFP vendor pay attention to security?
 - Bottom-line is always “It’s just a damn printer/MFP!”
 - How many persons or anti-malware products could clean such a malware?
 - Afaik, 0(zero) antimalware products for (huge) printers/MFPs market
 - Why not (net/port/vuln)scan the network from a printer which is not suspected/cleanable?
 - Why not hide the malware/payload on a network printer and then make your way through the network/data?
 - Etc., etc., etc.
MFPs Exploitation – Why?

- First of all – (most) printers/MFPs are already full-blown computers! (or even space-ships 😊)
- Have goodies to play/own:
 - Some flavor of (RT)OS (VxWorks, LynxOS, Nucleus, Linux)
 - Embedded Java VM (eg.: ChaiServer)
 - Embedded Web Server (eg.: Virata EmWeb)
 - Ethernet/WiFi
 - Not covering TCP/UDP/IP stack attacks, but there are examples
 - Eventually HDD – nice to scan/dump
 - Eg.: recent CBSNews Investigation Case – with much hype
 - Eventually SecureJet-like extensions – sweet thing 😊!
 - Eventually Fax board
 - Eventually Mailboxes
MFPs Exploitation – Why?

- MFPs interact with (hence can get access to):
 - RFID badges
 - Smart/swipe cards
 - Fingerprints
 - PINs
 - LDAP/domain passwords
 - Aren’t these some-of sweet things we are hunting after all?
Looking for confidential documents?

- Why taking the trouble for infecting a PC-host on a network (eg. both elements being secured, updated & monitored) just to get a document with strong crypto using long-enough key and then not being able to decrypt it...

- ...when instead wait for it to be in-printer decrypted (eg. SecureDimm) and printed (and I guess secret documents are still being printed on paper occasionally for selected eyes) so you get it decrypted in plain text
MFPs Exploitation – Why?

- Not so much information in this area (compared to PC or mobile devices)
 - PJL UPGRADE – approx 6 results
 - PJL LPROGRAMENG – 0 results
 - PJL LPROGRAMRIP – 1 result (security paper)
 - PJL DMINFO – approx 300 results
 - PJL DMCMD – approx 75 results
 - Compare with this PDF "/Launch“ – approx 55 Mln results

- Too few known (more or less) public research:
 - slobotron, phenoelit, irongeek, Protek Research Lab’s, DSecRG, SEC Consult + few other brave enthusiasts

- Recent disclosures mainly focused on web-admin, snmp, XSS and uncontrolled buffer overflows
 - Not too much detailed analysis on OS, kernel and firmware level
MFPs Exploitation – Why?

- Big **number of devices** – according to **Gartner**:

![Worldwide: Page Printer Vendor Shipment Estimates, 2005 (Thousands of Units)]

- Theoretically, magnitude of 10 x mlns of devices (24 mlns/yr):
 - Perfectly exploitable & non-easy-cleanable
 - Always on, no antivirus & firewall running inside of them
MFPs Exploitation – Why?

- The Holy Grail would be to own “securities printers”
 - Currency/financial assets printing machines
 - Unfortunately limited to very closed circles 😞 - for obvious reasons
 - No updates/patches on internet to poke around
 - Industrial currency check/count machines
 - More or less accessible
 - From BPS 2000/3000 Banknote Processing Systems for Central Bank Applications “The operating system software and all production data can be authenticated to protect data integrity and guard against tampering (optional)” – isn’t it just sweet 😊
 - Passport/ID printing machines
 - Eg.: Oberthur, Giesecke&Devrient, others
 - These are not part of this presentation 😞... yet 😊!
Current available public research

- **FX@phenoelit**
 - Earliest public research on printers’ security
 - Presented at BlackHat 2002
 - Demonstrated various HP/PJL flaws

- **Irongeek**
 - Most comprehensive printers’ security guide/article
 - Presented at Notacon 2006
 - Summarizes flaws at various levels in printers from different vendors
Current main players

- Canon
- Fujitsu
- HP
- Konica Minolta
- Lexmark
 - Dell is selling Lexmark – “So, Lexmark makes Dell's printers?”
 - Eg.: BRQP205.ffb is for Lexmark E342N/Dell Personal Laser 1710
- Xerox
- Sharp
- Kyocera Mita
- Kodak
- Brother
- Samsung
- Toshiba
- Ricoh, Lanier, Nashuatec, Infotek, OCE, OKI
Current state of vulnerabilities

- **Xerox** – Total 44
 - XRX04/10, XRX05/9, XRX06/7, XRX07/2, XRX08/10, XRX09/4, XRX10/2
- **HP** – **CVE-HP-printer, CVE-HP-MFP** = Total 20
 - More and more
- **Lexmark** – **CVE-Lexmark-printer** = Total 7
- **Canon** – **CVE-Canon-printer** = Total 2
- **Kyocera** – **CVE-Kyocera-printers** = Total 2
- **OKI** – **CVE-OKI** = Total 2
- **Fuji** – **CVE-Fuji** = Total 2
- **Ricoh** – **SB05-005** = Total 1
- **OCE** – **CVE-OCE** = Total 1
- **Brother** – **CVE-Brother-printer** = Total 1
- **Nashuatec** – **CVE-Nashuatec** = Total 1
- Too few for such a complex, big & old industry!
 - This can’t be true - the exploits are there waiting for us 😊
MFPs Exploitation – Real (miss)use scenarios

- **PDOS** aka bricking
 - Can be at most a teenage prank. Fun first 1-2 times.
 - **HDMoore**: “*It seems like if you can do a remote update of firmware, it would better to deliver a Trojan'ed firmware image, instead of just a DOS*”

- **Idle-time processing**
 - Port/network/exploits scanner
 - Computing/hash-cracking/sniffing

- **Malware/upload storage**
- “Stealth”/uncleanable command and control
- Unencrypted data theft

ANDREI COSTIN, HACK.LU, 2010
MFPs Exploitation – Real (miss)use scenarios

- Corporate/enterprise/intelligence assets data theft
 - Exploiting security extensions and data those process:
 - SecureJet
 - FollowMe
 - SecureDIMM
- Produce PDFs with 0-day exploits
 - Just infect/replace the PDF output engine or replace output PDF file
 - Usually, DSS and scanners are trusted internal sources
- Spam inside/outside networks
 - Many devices have emailing capabilities (not all configured though)

Andrei Costin, hack.lu, 2010
MFPs Exploitation – Scanned data theft

- Also independently discovered by Zscaler
- Root cause – lax security/policy on MFPs
- HP specific:
 - http://host/scan/image1.pdf?id=1&prev=1&time=0&type=4
 - http://host/scan/image1.jpg?id=1&type=4&size=1&fmt=1&time=0

- Abuse1:
 - Find the target host (intranet or internet)
 - Start with current time in epoch format
 - Option 1: Go downwards in increments of 1 (1 sec)
 - Makes sense to stop once a period of 6 months were iterated
 - Option 2: Keep polling the “current time”, hopefully someone is scanning “now”
 - Try to retrieve the documents
 - Hopefully retention is set in out favour
 - And the device has enough space in ramdisk/hdd

- Abuse2:
 - Configure device so that all scans are BCCed to attacker
MFPs Exploitation – Real (miss)use scenarios

- **Ransomware** *(as it becomes more widespread)*
 - Install the ransom-ware, which takes care to overtake the firmware upgrade module
 - So ransomware accepts only secured & signed upgrades/unlocks from its creators – anything else rejected
 - Store & forward (if external connection detected) documents-to-print to the creator
 - But instead of printing any document, print something like:
 - “This printer is hijacked. Get unlock got from: [website] using these details: [brand] [model] [serial_number] [ethernet_MAC] [other_bits]”
 - Based on printer model (it’s price, year), the ransom amount can be decided (obviously a fraction of the catalog/second-hand cost)
 - If the victim pays, unlock code/firmware is provided (customized for that printer only based on serial#/MAC/etc)
 - Otherwise, victim risks to “loose” his/her device *(sometimes quite expensive - $32K)*
MFPs Exploitation – *Futuristic/unreal* scenarios

Espionage/blackmail (high-profile)
- Very-unlikely, but possible. Target mainly models with HDD in high-profile organizations (those afford HDD models 😊)
- Store the documents which hit keywords (Eg.: strategic, attack, intelligence, transactions, $$) – hint: good as MFPs AI research!
- When storage is full, display [critical_dummy] error, document the error as “ship to 800-fake-service”, get data from HDD, ship back 😊
- “Spies in the Xerox Machine”
 - Russian saying goes “Everything new is actually well-forgotten old”
MFPs Exploitation – Physical attacks

- “The paper's speed keeps it from burning as it passes through the fuser assembly”. Temp approx: 185 °C/ 365 °F
- Attack1: Supply paper impregnated match-head powder/ KNO3/ NH4NO3
- Attack2: Firmware-controlled motors speed + fuser temp + thermo-sensors
 - Supported by default: set fuser to HIGH2, motors auto slows to lower ppm and then use thin paper/transparency
 - Custom firmware under research – gives more control
MFPs Exploitation – Targeted attacks

- **Visualization** (of target/enemy) is powerful!
- Useful if interest lies in specific:
 - Geo-locations, Device Class, Vendors, Models
- **Basic scripting gives us a nice map like below:**
 - Live demo
Main printer specifications

- Myriad of specs and languages ...
- **UEL** – Universal Exit Language
 - Just one command
 - `<esc>-%-12345X (<esc> is 0x1B aka \H1B aka ESCape)
 - Harmless by itself, lethal in specific combinations
- **PJL** – Printer Job Language
 - Developed by HP
 - Job level controls: printer language switching, job separation, environment, status readback, device attendance and file system commands
 - Have essential security design flaws, hence exploitable
 - Examples:
 - `<esc>-%-12345X@PJL JOB\r\n
ANDREI COSTIN, HACK.LU, 2010
Main printer specifications

- **PCL – Printer Control Language**
 - Developed by HP
 - Well, actually it’s not a control language (PJL is)... name confusion...😊
 - It’s more a formatting-control language, like PS
 - Harmless, but parsers and interpreters could be exploited
 - Examples:
 - Usually PCL jobs start with:
 - `<esc>E\r\n`
 - Sample commands in the job:
 - `<esc>&l1T`
 - Toggles the printer's job separation mechanism
 - `<esc>&l3X`
 - Instructs to print 3 copies
 - Mandatory PCL jobs end with:
 - `<esc>E\r\n`
Main printer specifications

- **PS** – PostScript Language
 - Developed by Adobe
 - Mostly formatting-control language, but has “device control” commands as well 😊
 - On top, it is a programming language as well... (see later)
 - Also, parsers and interpreters could be attacked
 - Hence can be exploited
 - Examples:
 - `%!PS-Adobe-3.0\r\n`
 - `%%LanguageLevel: 2`
 - `%%BeginFeature: *PageSize A4`
 - `1 1 sub ==`
 - `%%EOF\r`

- **PPD** – Adobe PS Printer Description
 - Describe the entire set of features and capabilities available for their PostScript printers
 - Contains the PostScript code (commands) – way to hack
Main printer specifications

- **PML** – Printer Management Language
 - HP’s object-oriented request-reply protocol to exchange device management information
 - **PML** can be used to query **SNMP values** from a printer device
 - So... turning SNMP off doesn’t solve all problems 😊
 - Examples:
 - `@PJL DMININFO ASCIIHEX="PmlRequest"
 ASCIIHEX="PmlReply"
 ASCIIHEX="PmlTrapRequest"
 - `@PJL USTATUS TRAP`

- **GPD** – Generic Printer Description
 - Windows GDI-based spec, similar to **PPD**
 - Used for creating **unidrv.dll** minidrivers for non-PS printers
 - Something like a customization plugin over unidrv.dll (not a bad idea)
 - Usually here: `c:\windows\system32\spool\drivers`
Specifications

- PJL holes:
 - No provisions for standard, secure and vendor/arch/os-independent way for binary/firmware upload/upgrades
 - Everyone reinvented their own wheel – sadly, most did it wrong...
Specifications

- **PJL holes:**
 - No standard provisions for strong authentication
 - No standard provisions for encryption
 - All usernames, PINs & passwords are in clear-text
 - @PJL SET USERNAME="HackingPrinters"
 - @PJL SET HOLDKEY="1234"
 - @PJL SET KMUSERKEY2 = "password"
 - Print job PIN security (@PJL HOLDKEY)
 - We are in 2010 – we get 0-9999 PIN/password range... 😊
 - Also, specs say nothing about N-tries-and-fails scenario actions
 - Again, the wheel...
Specifications

- PS/PPD holes:
 - setdevparams/setsystemparams
 - Can be powerful (and dangerous 😊)
 - Can be helpful, if you trust .PS file or know what you are doing
 - Can also set security/password settings on device – sweet
 - Think this: *.doc/* .pdf attacks PC, *.ps attacks MFP
 - Also, since PS is an interpreted programming language
 - Fuzz/smash the stack with PS recursion or stack operations
 - *Password PS-field in the PPD file is in clear-text
 - PPD have nice *PatchFile and *JobPatchFile commands
 - Explained later
MFPs Exploitation – How to approach?

- Remote-initiated printing (RIP) exploiting channel
 - Java is our best friend here
 - Flash and Silverlight are not too friendly... yet
 - JavaScript is good as well – use CrossSitePrinting
 - Will Google Cloud Printing be as well? Time will show

- Locally-initiated printing (LIP) exploiting channel
 - MS Word can somewhat help us
 - Adobe LiveCycle XDC files can help us
 - GhostView is not too friendly yet

- Exploiting “test print” access in printers’ EWS
 - Not always available
 - Easy to patch – though easy patches are hard to get right for some...
MFPs Exploitation – How to approach?

- **Exploit printer management software**
 - MITM+XSS
 - Successful on HP Web JetAdmin
 - To be tested on: Lexmark MarkVision, Xerox CentreWare

- **Internal interpreters’ exploit**
 - PostScript, PCL – most widely used interpreters
 - Can borrow ideas from GhostScript exploits

- **Locally-executed applications with rogue firmware**
 - Requires social engineering

- **Printer subsystem hacks**
 - Printer driver hacks for further MFP exploitation
 - Printing hacks for host PC exploitation
Remote-initiated printing exploit

- Printing Payload Exploit (PPE) over Java Applets requires some user intervention

- Lure the users to a site and then trick to print
 - Eg: print tickets, print discount coupons, print charity-related stuff, print government/tax related forms/discounts, etc.

- Auto-start printing trick
 - “mayscript” yes, “scriptable” true, jso = JSObject.getWindow(this), jso.call(“startPrintingPPE”...)

- Can be successful using social engineering/nagging
 - Similar to VBScript F1/Help Keypress Vulnerability
Demo – Remote-initiated printing exploit

- User lured: clicked “Print” (optional) and checked “Always…” (mandatory)
Demo – Remote-initiated printing exploit

- Printer exploited: reset, malware upload, etc.
Remote-initiated printing exploit

Possible exploitation problems

- User doesn’t check the box
 - This can be detectable by subsequent calls to java print services
 - Then annoy user until user checks the box (detectable by time-based analysis between java print services calls)
 - Eg: JS - window.location.reload
- Printer name != precise target name
 - Java print services gives us only printer name ☹
 - Use 1 binary with all known printers exploits
 - Hope one sub-firmalware hits the target, others will be discarded
 - Big data file is not quite invisible
 - Use “magic” detection (eg. like “%HP%”) and then fire one or a subset of firmalwares
Remote-initiated printing exploit

- Restart (on HPs) is accomplished by
 - @PJL \texttt{DMINFO ASCIIHEX = "040006020501010301040104"}
 - Same as phenoelit’s trick (BH2002)
 - SNMP \texttt{set .iso.3.6.1.2.1.43.5.1.1.3.1 = 4}
 - However, PJL DMINFO is actually “SNMP thru PJL”

- Java hints
 - PrintService
 - PrintServiceLookup
 - DocPrintJob
 - JobName
 - SimpleDoc
 - ... and DocPrintJob.print()
Locally-initiated printing exploit

- **MS Word**
 - “Print and get your printer owned” type of exploit
 - Will video demo in next slide

- **Adobe LiveCycle XDC files** (XML files)
 - Used in SAP® environments
 - “Infect”/replace all XDC files with required firmware payload
 - Doesn’t necessarily need admin rights
 - Good example how to do this is here on page 15

```xml
<xdp:xdp xmlns:xdp="http://ns.adobe.com/xdp/"
  xmlns="http://www.xfa.org/schema/xdc/1.0/">
  <xdc>
    <seg id="preDoc">
      <ESC>%-12345X@PJL RDY MSG DISPLAY=""\#13;\#10;
      @PJL UPGRADE SIZE = 1024\#13;\#10;[hex_encoded_payload]<ESC>%-12345X</seg>
    </seg>
    <xdc>
    </xdp:xdp>
```
Demo – Locally-initiated printing exploit

- “File upload” PPE over MS Word
Demo – Locally-initiated printing exploit

- “Printer-display change” PPE over MS Word
Demo — Locally-initiated printing exploit

• “Printer reset” PPE over MS Word
Solutions for remote+local initiated exploits

How to fix?

○ **Not easy**, since it’s PJL design + device vendors’ faults
○ Java, Word, LiveCycle, etc. have no big blame
 ▷ They act as “channels” for delivering the exploits/malware/malicious commands
 ▷ Rather than fixing channels, better fix specifications and devices
○ Perhaps correct PJL specs + follow standard and safe low-level communication with devices on top of PJL
○ Paranoid solution:
 ▷ Print everything thru a virtual/proxy/ filtering printer
 ▷ That will filter out unsafe/suspect payloads (and alert!), producing “safe” docs to print on real devices
 ○ Unless the virtual printer has bugs/is exploitable itself 😊
Exploiting “test print” access in printers’ EWS

- Print is unprotected! (and leaks internal network IP)
 - Do vendors think diagnostics actions can be harmless?
Exploiting “test print” access in printers’ EWS

- Accepts file as direct upload:
 - Filters based **only** on extension: txt, pdf, pcl, ps
 - Will **not** accept:
 - `print_my_hexor.rfu` or
 - `print_my_hexor.fmw`
 - Will accept:
 - `print_my_hexor.pcl`
 - Yes, in PCL we can embed PJL UPGRADE/equivalent commands
 - Also, **extension check doesn’t enforce content check**:
 - Rename `print_my_hexor.pcl` into `print_my_hexor.pdf`
 - And here we go again 😊
 - Example: use `HP_LJ5200_restart.pcl.pdf`
Exploiting “test print” access in printers’ EWS

- Accepts file as URL link to a printable document:
 - Exploit as in previous direct local upload
- Other interesting uses:
 - Check if printer can access external addresses (cool for command-and-control type of attacks)
 - Might reveal internal/external topology, as well as proxies along the way
 - If the chain is not properly configured and secured
 - Try to DoS the MFP in two types of slowloris
 - Attacker’s http-client “slowloris”es MFP’s EWS
 - Attacker’s http-server “slowloris”es the MFP’s initiated http-clients to our URL-document
 - Do both from above simultaneously 😊
 - Find race conditions in parsers: direct print, direct URL print, port 9100 print and print-server print; include also PJL/non-PDL cmds

ANDREI COSTIN, HACK.LU, 2010
Exploit printer management software

- **MITM – HP Example – firmware.glf:**
 - Contains the links for DLD/RFU firmwares
 - Used in WJA, HP Download Manager
 - Uses plain HTTP (not even HTTPS), hence not a problem to MITM
 - Once MITMed, malicious DLD/RFU firmware binaries are supplied

- **Combined MITM+XSS attack:**
 - MITM and supply malicious firmware binaries (as described above)
 - Exploit XSS bugs in admin panel of printer management software
 - Eg: HP WJA (or alike)
 - Use XSS to trigger automatic upgrade of devices
 - Two targets in one shot:
 - Devices infected
 - Web-admin software owned by XSS (can serve other purposes as well)
Exploit printer management software

- Use XSS as an infection-trigger step in combined MITM+XSS attack
 - Eg.: HP WJA has various persistent-XSS bugs, injectable from external channels
PostScript interpreters exploitation

- PostScript interpreters have bugs as well
 - GhostScript exploitable on your PC
 - “MfpPsInterpreter” exploitable on your MFP
- Stack and recursion are nice weapons
 - %%(Error: execstackoverflow; OffendingCommand: --nostringval--]%%
 - This is simple, but more complex/inconsistent stack operations can be done
 - Fuzzing the interpreter and stack is a good way to find out

```
%!-12345x@PGL JCB NAME="PostScript StackSmash"
@PGL SET STRINGCODESET=UTF8
@PGL SET MOLD=OFF
@PGL SET RESOLUTION=600
@PGL SET BITSPERPIXEL=1
@PGL ENTER LANGUAGE=POSTSCRIPT
%!PS-Adobe-3.0
%!Title: PostScript StackSmash

/stacksmash_loop {
  dup -1 sub
  stacksmanyhead
  mul
} def

1 stacksmanyhead ==

%!EOF
%!-12345x@PGL EOJ
%!-12345x
```
PostScript interpreters exploitation

- PostScript-related exploits
 - CVE-2004-1717 – Remote buffer overflow
 - CVE-2007-6725
 - CVE-2008-0411 / CESA-2008-001 – Stack-based buffer overflow
 - CVE-2008-6679
 - CVE-2009-0196
 - CVE-2009-0583 / CVE-2009-0584
 - CVE-2009-0792
 - CVE-2009-4195 – Buffer overflow
 - CVE-2009-4270
 - CVE-2009-4897
 - CVE-2010-1628
 - CVE-2010-1869 – Stack based overflow

- Try/tweak them out on your MFPs fleet
 - Some might surprise you
 - Got some (unreliable) crashes by tweaking few of the above
Locally-executed apps with rogue firmware

- If all other fail
 - Because of: fixes in webserver, script-blockers, etc.
- Social engineer the user to “download and play a nice game” application
- Doesn’t have to be a PC virus, a valid app will do ok:
 - It will be just a printer malware
 - So zero antivirus detection guaranteed still 😊
- Just connect to TCP port 9100 printer job spooler
- Dump the exploit/malware
 - Use @PJL UPGRADE style commands
 - Use @PJL FS* style commands
Locally-executed – Print subsystem hacks

- Find exploit stream for unidrv.dll/pscript5.dll
 - Get LOCAL SYSTEM privileges (spoolsv.exe)
 - unidrv/pscript5 dlls called from user space
 - No need for admin
 - Called locally
 - Called remotely – via shared printers
 - Examples:
 - Stuxnet, well yeah!
 - Contained oday exploiting spoolsv.exe / StartDocPrinter / policies
 - Well, oday back in Apr 2009
 - I’ve been warning back in Apr 2010
 - Nobody cared, except perhaps SIGINTs-related

- Printing sub-systems are broken...
Locally-executed – Printer driver hacks

- Other require social engineering+admin level
 - Replace the driver *.dlls
 - Stuxnet, got HP/other MFPs driver signature private keys?
 - Provide an “enhanced” driver, with printer-malware inside
- “Infect” the GPD files
 - Replace with legitimate *Cmd containing malware payload
Locally-executed – Printer driver hacks

- “Infect” the PPD files
- *PatchFile, *JobPatchFile
 - Represents a PS language sequence that is a downloadable patch to ROM code or into initial VM

```plaintext
*JobPatchFile 1:;"
%BeginResource: LH PatchFile
false
800344A251010CD0613719CCA731D08205041C8DC6031190C04032170C61A728 ...
```

- *FileSystem
 - The *FileSystem query can be used to dynamically determine whether or not a file system is actually present

```plaintext
*FileSystem: "
  save false
  (%disk?)
  { currentdevparams dup /Writeable known
    { /Writeable get {pop true} if } { pop } iffalse
    10 string /IODevice resourceforall
  restore" *End
```
MFPs attack vectors – Overall diagram

Owned Printer

Printers Admin Console
- Web JetAdmin, MarkVision, Centrware
- some are persistent XSSable
- other types of exploits?

Attacked User

Man-in-the-Middle (MITM) attack:
- easy, since it's HTTP based (e.g., firmware.qdf)
- replaces genuine firmware with firmware
- injects persistent XSS into printers' WebAdmin
- triggers by XSS printers malware mass-upgrade

Printer vendor firmware storage
- Plain HTTP (bad)
- No-Authentication (bad)
- No-Authorization (bad)
Privacy/transparency concerns

- Not satisfied with printer tracking dots?
- Satisfaction guaranteed with:
 - HP Download Manager – a story from backstagedoor
 - Will present minimal analysis of hpjdwnld.exe
Privacy/transparency concerns

- **Important note:**
 - It’s **not** managing a PC-backdoor
 - It **is** managing an MFP-backdoor
 - *strings* utility is enough to spot it
 - Checks for `%HOME%\upgrades\jetdirect\SpecialUpgrades.txt`
 - Checks special firmware files for ShortStack/CodeImage microcodes
 - If you have samples for above 2 items, please share them!
 - Possibly similar to [AMD K8 Microcode backdoor update feature](#)

- **Have few others** HP call-home features under investigation

- **Are vendors being responsible when including backdoor/call-home features?**
 - Well-known PR fiascos: [Energizer](#), [Sony](#)

ANDREI COSTIN, HACK.LU, 2010
Privacy – What about PhoneHome feature?

- **Phone Home** feature in HPs
 - Present in EWS of devices (telnet/web/snmp interfaces)
 - SNMP MIB is `1.3.6.1.4.1.11.2.4.3.7.31.0`
 - “Use an SNMP management or command line utility to set the object identifier (OID) `1.3.6.1.4.1.11.2.4.3.7.31.0` to zero (0)”
 - telnet - “...use the Telnet "phone-home-config: o" ...“
 - Present in WJA software package
Privacy – Some thoughts

- PhoneHome (1.3.6.1.4.1.11.2.4.3.7.31.0) privacy statement says:
 - “If permitted to do so, HP will collect this information as statistical data only and use it to improve product features and services. Personal data is not collected in accordance with HP privacy policies”
 - Well, name implies something else
 - We want all its juicy details 😊

- PhoneHome + JetDirect Firmware Backdoor
 - Can be easily misused by HP
 - Raises (at least should!) privacy concerns
 - Not very well documented by vendors
 - Can be misused by malicious attackers
 - After all, multiple naming FAIL!
Printer debugging (or lack of it)

- syslogd messages - examples
 - Most HP syslogd’s are not very debugging-friendly
 - Interesting fact - when resuming from sleep, it does:
 - “error <51> printer: offline or intervention needed”
 - “info <54> printer: error cleared” (auto-heal?)

Syslogs

<table>
<thead>
<tr>
<th>TimeStamp</th>
<th>Agent</th>
<th>Facility</th>
<th>Level</th>
<th>Alert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fri Aug 27</td>
<td>lpr</td>
<td>informational</td>
<td><54> printer: error cleared</td>
<td></td>
</tr>
<tr>
<td>Fri Aug 27</td>
<td>lpr</td>
<td>error</td>
<td><51> printer: offline or intervention needed</td>
<td></td>
</tr>
<tr>
<td>Fri Aug 27</td>
<td>lpr</td>
<td>informational</td>
<td><54> printer: error cleared</td>
<td></td>
</tr>
<tr>
<td>Fri Aug 27</td>
<td>lpr</td>
<td>informational</td>
<td><54> printer: peripheral low-power state</td>
<td></td>
</tr>
<tr>
<td>Fri Aug 27</td>
<td>lpr</td>
<td>informational</td>
<td><54> printer: ready to print</td>
<td></td>
</tr>
<tr>
<td>Fri Aug 27</td>
<td>lpr</td>
<td>warning</td>
<td><52> printer: powered up</td>
<td></td>
</tr>
<tr>
<td>Fri Aug 27</td>
<td>lpr</td>
<td>debug</td>
<td><55> printer: syslog started</td>
<td></td>
</tr>
<tr>
<td>Fri Aug 27</td>
<td>lpr</td>
<td>error</td>
<td><51> printer: offline or intervention needed</td>
<td></td>
</tr>
<tr>
<td>Fri Aug 27</td>
<td>lpr</td>
<td>informational</td>
<td><54> printer: ready to print</td>
<td></td>
</tr>
<tr>
<td>Fri Aug 27</td>
<td>lpr</td>
<td>warning</td>
<td><52> printer: powered up</td>
<td></td>
</tr>
</tbody>
</table>

- Perhaps **VxWorks** debugging by **hdm**
 - Had no luck in finding one with this enabled

ANDREI COSTIN, HACK.LU, 2010
DevEnv – How?

• My vision (yours might be slightly/totally different)
 ○ Unpack/mount the firmware
 ▫ Need to reverse most important formats out of myriad
 ▫ Crack any crypto + signature is a “desirable option” of course
 ○ Map it’s arch + OS
 ▫ Wiki, hex-view, specs, IDA, obj* suite
 ○ Fine-tune IDA, binutils, obj* army for that specific combination
 ○ Reverse the workings of (each) specific executable
 ○ Introduce the payload:
 ▫ Byte-patch, if you talk code-machine better than your native lang
 ▫ Compile a binary in an emulated env (if all prerequisites permit)
 ○ Test payload:
 ▫ Directly on hardware – tricky, may brick it, need good HW skills, etc.
 ▫ In an emulated env – very convinient, but again not always possible
DevEnv – Why?

- A DevEnv+Emulator tandem is preferred for:
 - Vendor firmware testing for vulnerabilities (parsers, etc.)
 - Develop malicious payloads/firmware for a device/device-class
 - Allows easier fuzzing
 - Is a more formal approach, rather than trial-and-error

- Unless:
 - You want a BIG net of BIG bricks (not bots) and BIG angry corps on your 455!
 - You own a warehouse of MFPs for tests
DevEnv – What?

- **Toolchains:**
 - Crosstool-ng, buildroot, scratchbox

- **Emulators**
 - Qemu, OVP, RTEMS, ARMulator

- **OSes on most printers/MFPs:**
 - LynxOS
 - VxWorks
 - NucleusOS
 - Linux (for various non-std architectures)
 - pSOS

- **Processors on most printers/MFPs:**
 - MIPS (PCM-Sierra)
 - RISCs (Toshiba TMPR4955)
 - ARM (Marvell ARMv5TE-compliant, custom HP-ARM)
 - SPARC (Fujitsu MB86830 series)
DevEnv – first things first – Linux

- Lexmark luckily went Linux/GPL
 - But VxWorks and LynxOS are not out-of-community potential/knowledge
- Best start for devenv setup & research bootstrap
 - \textit{E23x_E33x_141_C20.FLI} is a good kernel-loading example
 - Interacts with NVRAM and other stuff (good to understand)
 - Have “\textit{BIN}” wrapped image of Linux kernel
 - Can also be built from sources, though EAN.KA.Koo9 not released

```
 0001fc00h: 00 00 00 00 00 00 00 01 00 00 00 00 58 A7 7C 42 ; ..............X$\mid B
 0001fc10h: 49 4E 00 1A BE FE FF AA 00 D7 FF AA 00 CO FF AA ; IN..\texttt{\textbackslash y}\texttt{\textbackslash y}.\texttt{\textbackslash y}.\texttt{\textbackslash y}
 0001fc20h: 00 C1 00 00 00 64 FF AA 00 C5 62 65 61 66 01 00 ; .\texttt{\textbackslash d}\texttt{\textbackslash y}\texttt{\textbackslash y}.\texttt{\textbackslash A beaf}.
 0001fc30h: 01 00 00 00 C0 00 00 06 3C CA 4B 65 72 6E 65 6C ; \ldots \texttt{\textbackslash Kernel}
 0001fc40h: 00 00 00 00 00 00 00 00 00 00 00 00 45 41 4E 2E 4B 41 ; \ldots \texttt{\textbackslash EAN.KA}
 0001fc50h: 2E 4B 30 30 39 00 00 00 00 00 00 00 00 00 00 ; .K009...0.....
 0001fc60h: 00 00 00 00 1B BE 00 00 50 00 00 00 00 00 00 00 ; \ldots \texttt{\textbackslash P}.....
 0001fc70h: 00 00 00 00 00 02 62 6C 64 2D 6C 69 62 00 00 00 ; \ldots \texttt{\textbackslash bld}\texttt{-lib}...
 0001fc80h: 00 00 00 00 00 00 00 00 00 57 65 64 20 4E 6F 76 20 32 39 ; \ldots \texttt{\textbackslash Wed Nov 29}
 0001fc90h: 20 31 35 3A 31 30 33 3A 35 30 20 32 30 30 36 00 00 ; 15:10:50 2006...
```
DevEnv – Firmware Unpack/Mount

- Firmware image unpackers:
 - Simple script-like C-tools
 - Do not work yet with encrypted firmware package
 - Strip proprietary-PJL wrappers and spit binary raw inside
 - Some have a single ELF file (example: E23X_.fli)
 - Some have a FS-like object with tree-structure and binary content
 - Can adopt and use libPJL from phenoelit

- Ultimate goal:
 - File-based FS drivers
 - To be as simple as:
 - ./mount –t hp-fru HPLJ5200.fru /mount/fw_test
DevEnv – Firmware Unpack/Mount

- Example: excerpt from a single block of HP simple-FS, many of these found inside a single RFU firmware file:

```
#define PJL_UPGRADE

// small endian architecture
/*
  4 bytes ID/parent of entry,
  2 bytes size of entry (ENTRY_SIZE),
  2 bytes length of entry_name (ENTRY_NAME_LEN),
  ENTRY_NAME_LEN bytes having name,
  (ENTRY_SIZE - 4 - 2 - 2 - ENTRY_NAME_LEN) bytes
*/
typedef struct _fentry_fix_
{
    unsigned char entry_id[4]; // 4 bytes
    unsigned char entry_size[2]; // 2 bytes
} fentry_fix;

typedef struct _fentry_var_
{
    unsigned char entry_name_len[2]; // 2 bytes
    char *entry_name; // variable
} fentry_var;

typedef struct _fentry_
{
    fentry_fix fix;
    fentry_var var;
    fentry;
```
Sample firmware under microscope

- **BarSTORM barcode printers**
- **Linux FS image with default unsalted passwords**
 - root: 1B$12o9Z7NcvQAKp7wyCTlia0:10933:0:99999:7:::
 - lp: 1B$RfHkehRv/LWAGZdCEvUU90:10933:0:99999:7:::
 - bcadmin: 1B$YSpLiaVeoDkQidsOLxlm5/:10933:0:99999:7:::
 - engineer: 1B$YSpLiaVeoDkQidsOLxlm5/:10933:0:99999:7:::
 - admin: 1B$12o9Z7NcvQAKp7wyCTlia0:10933:0:99999:7:::
 - crypt(“password”)=1B$12o9Z7NcvQAKp7wyCTlia0
Sample firmware under microscope

- IBM InfoPrint IP 6700
 - 369676.prg
 - pRiNtrOnIx firmware and components
 - Seems like a H4X0R designed the firmwares 😊
- Has RFID from awidasia
 - SDK and samples to play with are here
- Some keywords to get you interested:
 - PaRtITiOn OF RFID, rfidfirm.bin, rfidchip.inf, rfidtag.inf
 - AWID MPR-1510 V2.6h UHF MODULE Firmware Ver4.27
 - Why not spy on RFID tags or KIL all tags?

<table>
<thead>
<tr>
<th>Silicon, TID, EPC Word Length, USP Word Length, TID Word Length, ACS/KIL supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impinj Monza 1, E200104, 6, 0, 2, No</td>
</tr>
<tr>
<td>Impinj Monza 1a, E200105, 6, 0, 2, Yes</td>
</tr>
<tr>
<td>Impinj Monza ID, E200106, E200108, 6, 0, 2, No</td>
</tr>
<tr>
<td>Impinj Monaco 64, E200106, E200108, 6, 4, 2, No</td>
</tr>
<tr>
<td>Impinj Monza 2, E200107, 6, 0, 2, Yes</td>
</tr>
<tr>
<td>Impinj Monza 3, E200109, 6, 0, 2, Yes</td>
</tr>
<tr>
<td>Alien Higgs 2, E2003411, 6, 0, 2, Yes</td>
</tr>
<tr>
<td>Alien Higgs 3, E2003412, 6, 0, 6, Yes</td>
</tr>
<tr>
<td>Phillips Ucode EPC Gen2, E2006001, 6, 14, 2, Yes</td>
</tr>
<tr>
<td>Phillips Ucode G2XL, E2006004, 15, 0, 4, Yes</td>
</tr>
<tr>
<td>Phillips Ucode G2XMI, E2006003, 15, 32, 4, Yes</td>
</tr>
<tr>
<td>ST Micro XR&G2, E2007240, 16, 0, 4, Yes</td>
</tr>
</tbody>
</table>
Sample firmware under microscope

- **SMS Printers (examples)**
 - Eg.: DPSPro, Gatetel, Possio GRETA, Secugis

- **Empty paper roll DOS attack (most printers)**
 - Avg ~ 62 SMSes (160 new-line chars each SMS) for 50m rolls

- **Configuration commands attack**
 - Against DPSPro. Others might have hidden conf commands as well!
 - “#V1: 0=SMS 1=VOICE CALL [0]. This variable chooses whether the Printer will confirm with an SMS or placing a call.”
 - “#Y: Programs ACCEPT number to which ACCEPT SMS will be sent. Note1: if the CALL option is enabled, the unit will place a call instead.”
 - Make it call your/friend’s premium number is the answer 😊

- **Nice to have – reflash by TPDU-SMS 😇**
“Secure Thinking” in quotes

- **HP Security Solutions**
 - “Q23. Are current HP multifunction printers susceptible to viruses and worms? No, since the majority of viruses and worms exploit vulnerabilities in Windows-based computers. HP MFPs use non-standard operating systems other than Windows. Consequently, they are immune to these viruses and worms. **In practice, there have been no known instances of viruses or worms infecting HP MFPs**”
 - Well, PoC-community or some haxor or some IT-criminals might change that “in practice” then!
 - “**Firmware generally behind software in terms of secure development & deployment**” – more than true
 - Wonder if HP's SecLab [PhlashDance](#) ever reached HP's MFP R&D
“Secure Thinking” in quotes

- **Sharp Security Suite**
 - “Sharp MFP products use unique embedded firmware and are not based on Windows operating systems. Therefore, Sharp MFP’s internal systems are not subject to the same Virus vulnerability as Microsoft operating systems. We believe this approach provides the internal systems of our products with protection against common Windows executable viruses and other similar infectious software programs.”
 - Well, possibly are vulnerable to other (i.e. not same) virus vulnerabilities!
“Secure Thinking” in quotes

- **Lexmark MFP Security, Samsung MFP Security**
 - “In other areas, the security considerations around printers/MFPs are substantially different: they generally don’t run conventional operating systems, they don’t have network file shares that need to be secured, they probably don’t need or support antivirus software, etc.”

 - Who did copy from who that text? Or they just assumed the leader is right and mutually-copy-pasted?
 - “…probably…” ?!
 - Nowadays, if you have an OS, a FS and externally connected execution environment, most likely you need internal antivirus/IDS/IPS
“Secure Thinking” in quotes

- Final thought on above “secure thinking” quotes
- Remember psybot? To summarize
 - Non-conventional arch – true – MIPS
 - Non-conventional OS – true - Mipsel Linux
 - Doesn’t support antivirus – true – “why should we?!”
 - Got owned – very true – ~100k devices in a sophisticated command-and-control botnet

- If you need more arguments for securing/cleaning embedded devices, running unconventional OS+arch which do not support secure/antimalware standards/frameworks
 - Perhaps security is your lowest priority hobby – my $0.02...
Solutions – Printer Vendors’ Side

- First, accept that present day printers (especially network ones) are:
 - Full-blown computers themselves
 - A security target/threat
 - To be considered as part of Secure Development/Testing/Audit Lifecycles

- Fix those specs and parsers (PJL, PCL, PML, PDF, PS)

- Fix those damn web/telnet/ftp/snmp/etc. interfaces

- If first random 200 bytes fuzz string crashes/bricks your device...
 - ...time to put in practice SDL. we are in 2010, remember?...
Solutions – Printer Vendors’ Side

- Authenticate uploader, crypt, sign and verify signature of the uploaded firmware
 - Btw, homebrew or kindergarten crypto is NOT crypto!
 - Or make (some) implementations FOSS – so open and secure standards can be implemented (oh, these utopian ideas...)

- Be fair!
 - Transparent and backdoor-free systems/software

- Collaborate with antimalware vendors for your platforms
 - Could win you a nice marketing step

- Last but not least – remove default passwords and make mandatory strong-password changes as part of the initial setup procedures/installations
Solutions – Antimalware Vendors’ Side

- Collaborate with vendors and security community
 - Make vendors understand those MFPs are real exploitable targets
 - Also, it could be a good marketing step “First antimalware on printers/MFPs”
 - Develop open and secure practices/protocols for in-printer antivirus management and updates
- If above collaboration does not work
 - Sponsor high-profile MFP exploit botnet – volunteers are out there
 - You have your foot in the “MFP antimalware market”’s door
 - This point is more to be joke 😊
 - Though, not that there were no surprising developments
- Setup honey-pots for most-spread MFPs EWS:
 - Similar to renowned /etc/passwd
 - Study blackhats/bots actions to train IDS/IPS for MFPs
 - Get samples of firmalware or exploit payloads (PJL, PS, PCL)
- ... even though AV concept is being considered obsolete
Solutions – Admins’ Side

• Develop and **follow** secure periodic practices and checklists for all your MFPs/printers
• Use and analyze extensive logging using MFPs management platforms
• Properly isolate MFPs on appropriate network segments
• Perhaps implement stricter domain-level printing policies
• Well, last but not least – don’t leave those default accounts/passwords on
Solutions – IDS/IPS

- Update and improve printer-based IDS/IPS sigs
 - Addresses to antimalware and admin side

- Dilemma
 - Start filtering in paranoid mode, but...
 - Can impact a scheduled mass upgrade of net-administered MFPs
 - Can impact pretty valid print jobs
 - Where should the balance be...?
 - Real solution is to fix the specs
Solutions – IDS/IPS

- Snort IDS signature samples
 - The RDYMSG is only annoying
 - Don’t SNORT it, cron it on repetitive (RDY/OP/SYS)MSG reset
      ```
      alert tcp $EXTERNAL_NET any -> $HOME_NET 9100 (msg:"POLICY HP JetDirect LCD modification attempt"; flow:to_server,established; content:"@PCL RDYMSG DISPLAY ="; classtype:misc-activity; reference:bugtraq,2245; reference:arachnids,302; sid:568; rev:5;)
      ```
 - PDOSing is not fun anymore - is already a concern
 - Though this SNORT rule sucks. Do you see why?
      ```
      alert tcp $EXTERNAL_NET any -> $HOME_NET 9100 (msg:"ET EXPLOIT Xerox WorkCentre PCL Daemon Buffer Overflow Attempt"; flow:established,to_server; content:"ENTER LANGUAGE ="; depth:50; nocase; isdataat:55,relative; content:!'|0A|'"; within:55; pcre:"
      ```
 - The real pain is MFP malware (PJL UPGRADE types)
 - Your pride starts having pains in your back... unless fixed
 - pcre:"/ENTER\[x20]+LANGUAGE..."

ANDREI COSTIN, HACK.LU, 2010
Solutions – Users’ Side

- Stay updated to latest firmware of the printer’s vendor
 - Make sure you choose a security-aware vendor (but skip the marketing BS between the lines)
- Don’t print anything from untrusted sources
 - Well, this is hard... everybody is untrusted today
- Don’t open unknown files
 - Not guaranteed that malware detection is triggered for printers-related malware
 - Important point – exploits the MFP, no need for admin rights on PC!
- Log and monitor printers’ activity
 - Connects from it’s IP
 - Paranoid mode – USB data filter from the printer to host PC
 - You never know what bugs do printer’s driver have on the PC
- Use safe virtual printers to produce malware-free docs
Conclusions

- As PoC shown, printers are exploitable
- Specs have holes and are outdated for the new IT security realities:
 - Device and antimalware vendors seem to ignore the issues... yet
- MFPs are more than “dummy printers” – these are full-blown machines with great power and connectivity
- MFPs tend to interact with same (or even bigger) number of technologies as computers:
 - Eth
 - WiFi
 - RFID
- MFPs have access to almost same set of secrets as PCs
Slobotron on Hacking Printers

phenoelit’s HP resources

Irongeek’s “Hacking Network Printers”

SANS Auditing and Securing Multifunction/MFP Devices

- Amusing note: “Using this port and the right utility you can, among other things, change what shows up on the LCD display. Modification of the LCD panel, either causing confusion ("Out of Service") or opening the door for social engineering purposes ("Error. Call 555-5151.").”
“Vulnerabilities in Not-So-Embedded Systems”
“Exploiting Printers by Analyzing Their Firmware”
(nowhere to find on the net... censored?!)
“Juste une imprimante”
“Network Printing” book
MFP Security for Enterprise Environments
cyrtech.de
@PJL COMMENT = “Insert coin to continue”

• ?

Questions?

• !

Thank You...
Print-in-touch:
- `lpr -P honeypot-printer@andreicostin.com -Y -J "Hacking Printers" -T "Comments/suggestions/collaboration" -m andrei@andreicostin.com -m zveriu@gmail.com`--

Till next time... keep your MFPs safe as golden: