
MobiDeke: Fuzzing the GSM Protocol Stack

Sébastien Dudek
Guillaume Delugré

Sogeti / ESEC

Hack.lu 2012

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Who we are

Sébastien Dudek

• Has joined the ESEC R&D lab this year (2012) after his internship

• Subject: Attacking the GSM Protocol Stack

• Developer of a GSM fuzzing framework (‘MobiDeke’)

Guillaume Delugré

• Researcher working at Sogeti ESEC R&D lab

• Working on embedded devices / reverse engineering

• Developer of ‘qcombbdbg’ (Qualcomm 3G key Icon255 debugger) and
‘Origami’

MobiDeke: Fuzzing the GSM Protocol Stack 2/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Summary

1 Introduction

2 Fuzzing over-the-air

3 The MobiDeke Framework

4 Conclusion

MobiDeke: Fuzzing the GSM Protocol Stack 3/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

The GSM (2G) network

MobiDeke: Fuzzing the GSM Protocol Stack 4/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

User Equipments (mobile phones)

Radio control functions are highly timing dependant, so most of the phones use
two separated CPUs nowadays

The application processor

• Runs the user OS: Android, iOS, Windows Mobile, and so on

• Documented (often)

The baseband processor

• Responsible for handling telecommunications

• Includes stacks for telephony protocols

• Closed binary blob running RTOS

See the talk of Guillaume at 28c3 (Chaos Computer Congress) for more
information.

MobiDeke: Fuzzing the GSM Protocol Stack 5/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Existing attacks

Many papers have been published:

• Harald Welte: Fuzzing your GSM phone using OpenBSC (2009);

• Collin Mulliner: Fuzzing the Phone in your Phone (2009);

• Collin Mulliner, Nico Golde and Jean-Pierre Seifert : SMS of Death: from
analyzing to attacking mobile phones on a large scale (2011);

• Nico Golde: SMS Vulnerability Analysis on Feature Phones (2011);

• Ralf-Philipp Weinmann: Baseband Attacks, WOOT 2012

• ...

MobiDeke: Fuzzing the GSM Protocol Stack 6/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

What we are looking for

• The baseband: new angle of attack

• Setup a network is easy today thanks to SDR contributions (OpenBTS,
OpenBSC, and so on)

⇒ Attacking a cellphone ‘over-the-air’ could be fun! (+ not completely
explored)

Typical scenario

• The attacker controls a rogue base station

• The victim joins the cell and gets remotely exploited

*SDR: Software-Defined Radio

MobiDeke: Fuzzing the GSM Protocol Stack 7/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

To reach our goal

• Baseband code is proprietary

How to find bugs?

• Reverse-engineering: Hard because the code is very complex

• Fuzzing: The easier way, but need some knowledge and a radio device like
the USRP (we’ve won one at hack.lu;) or a nanoBTS, UmTRX, Phi card...

For more information: Harald Welte’s presentation at SSTIC 2010 gives also a
good overview of the GSM industry and security

MobiDeke: Fuzzing the GSM Protocol Stack 8/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Fuzzing

4 very important points

• Choose your target

• Targeting the baseband GSM stack (2G), not 3G, HSDPA, LTE...
• SMS are usually not parsed by the baseband (passed as raw PDUs to the APP)
• Smartphones: HTC Desire S, Desire Z, iPhone 4S. . .

• Inject malformed data

• Monitor target activity

• Classify bugs, behaviours

MobiDeke: Fuzzing the GSM Protocol Stack 9/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Fuzzing

4 very important points

• Choose your target

• Inject malformed data

• Smart generation of GSM packets (specs, existing librairies. . .)
• Mutate each field of the generated message (describe a structure with Sulley)

• Monitor target activity

• Classify bugs, behaviours

MobiDeke: Fuzzing the GSM Protocol Stack 9/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Fuzzing

4 very important points

• Choose your target

• Inject malformed data

• Monitor target activity

• Quite difficult because we don’t have a debugger
• Check if the phone is responding
• Look for strange behaviors / side-effects
• ...

• Classify bugs, behaviours

MobiDeke: Fuzzing the GSM Protocol Stack 9/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Fuzzing

4 very important points

• Choose your target

• Inject malformed data

• Monitor target activity

• Classify bugs, behaviours

• Crash reporting: report with indicators
• Replay the recorded payload and see what happens

MobiDeke: Fuzzing the GSM Protocol Stack 9/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Summary

1 Introduction

2 Fuzzing over-the-air

3 The MobiDeke Framework

4 Conclusion

MobiDeke: Fuzzing the GSM Protocol Stack 10/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

GSM layers

Layers

• Layer 3

• Radio Ressource: Channel set up and
tear-down

• Mobility Management: User location...
• Connection Management: Call (CC),

SMS and other services

• Layer 2

• Fragmentation
• Integrity check

• Layer 1

• Transfers data over the air interface
• Uses GMSK modulation
• F/TDMA for multiple accesses

MobiDeke: Fuzzing the GSM Protocol Stack 11/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

L3 Messages structure

There are 5 standards defining information elements (described in 11.1.14 in the
TS 04.07)

MobiDeke: Fuzzing the GSM Protocol Stack 12/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

State Machines: Originating a Call example (simplified)

SETUP

ASSIGNMENT

MS:CALL_CONFIRMED

END

RELEASE

RELEASE

CONNECT

ASSIGNMENT_COMPLET

RELEASE SPEAK

BTS:CONNECT_ACK

RELEASE

Observations

• There is often a way to exit from a
state machine (e.g.: The RELEASE
message)

• Sometimes a state requires user
interaction

• There are ‘obscure’ elements: present
in specs, but never seen in real life. . .

MobiDeke: Fuzzing the GSM Protocol Stack 13/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Message exchanges

Some message exchanges can be considered as stateless, but there are also finite
state machines

Stateless exchanges

• Simple to fuzz

Finite state machines

• Complex and harder to fuzz

• Also harder to program correctly: potential surprises

MobiDeke: Fuzzing the GSM Protocol Stack 14/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Let’s fuzz it!

We have set up our network with OpenBTS as follows

But how to send a payload to a targeted cellphone? ⇒ Use the ‘testcall’
feature

MobiDeke: Fuzzing the GSM Protocol Stack 15/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

The ‘testcall’ feature

The ‘testcall’ feature

• Included in OpenBTS (since 2.5 version) and OpenBSC

• Opens a channel for each targeted IMSI*

• The channel ties to an UDP socket on local computer

• Takes packets as Layer 3 messages and forwards them to the mobile

*IMSI: International Mobile Subscriber Identity

MobiDeke: Fuzzing the GSM Protocol Stack 16/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Fuzzing problems...

Testcall exists for fuzzing handsets, but it’s not enough because

• It works for a limited time

• OpenBTS crashes a lot

• The reserved channel is not very stable

• You’re stuck to your chair while trying to send all your testcases...

• What about the monitoring?

MobiDeke: Fuzzing the GSM Protocol Stack 17/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Testcases generation and mutation
Monitoring
Report
Future enhancement

Summary

1 Introduction

2 Fuzzing over-the-air

3 The MobiDeke Framework
Testcases generation and mutation
Monitoring
Report
Future enhancement

4 Conclusion

MobiDeke: Fuzzing the GSM Protocol Stack 18/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Testcases generation and mutation
Monitoring
Report
Future enhancement

MobiDeke?

To perform our fuzzing tests, we created a framework that:

• Generates and mutates L3 messages

• Sends payload ‘over-the-air’

• Checks if a handset is ready to receive our payload

• Monitors states (Phone and BTS)

• Records a final report

MobiDeke: Fuzzing the GSM Protocol Stack 19/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Testcases generation and mutation
Monitoring
Report
Future enhancement

MobiDeke Architecture Diagram

MobiDeke: Fuzzing the GSM Protocol Stack 20/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Testcases generation and mutation
Monitoring
Report
Future enhancement

MobiDeke: Data generation and mutation

MobiDeke: Fuzzing the GSM Protocol Stack 21/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Testcases generation and mutation
Monitoring
Report
Future enhancement

Methods for data generation and mutation

Creating crafted L3 messages

• Dumb: using captures (MBUS Nokia, OsmocomBB...) and bit-flipping

• Smarter: knowing the structure of the messages

• gsm um for scapy: interesting but not complete
• libmich developed by Benôıt Michau: we have chosen this solution for the

most part

Mutations

• ‘libmich’ Mutor

• Sulley mutation engine

It is better to combine multiple generation methods to cover as much testcases as
possible.

MobiDeke: Fuzzing the GSM Protocol Stack 22/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Testcases generation and mutation
Monitoring
Report
Future enhancement

MobiDeke: Monitoring

MobiDeke: Fuzzing the GSM Protocol Stack 23/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Testcases generation and mutation
Monitoring
Report
Future enhancement

Methods used to monitor crashes

Problems

• Blackbox monitoring

• Did the baseband crash?

Solutions

• Check if the baseband still responds correctly to ‘AT’ commands

• Look for bugs on the application processor by checking crashlogs

• Check the radio channel state reserved by OpenBTS

MobiDeke: Fuzzing the GSM Protocol Stack 24/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Testcases generation and mutation
Monitoring
Report
Future enhancement

Check the reserved channel: ’over-the-air’

Motivations

• OpenBTS crashes a lot! During that time your fuzzer continues to send
payloads...

• Is the reserved channel stable enough?

• Is the baseband ready to receive the next payload?

• Did the baseband crash?

Solutions

• Check the radio channel state regularly ⇒ Transaction entries, paging states
in OpenBTS.

• Send ‘ping’ requests to the baseband ‘over-the-air’

• Send a IDENTITY REQUEST, the mobile will respond with an IDENTITY

RESPONSE

MobiDeke: Fuzzing the GSM Protocol Stack 25/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Testcases generation and mutation
Monitoring
Report
Future enhancement

Check ‘AT’ responses with the ’injecATor’ locally

• We checked for phone responsiveness on the radio side

• What about on the local interface?

We modified Collin Mulliner’s ‘injector’ to forward ‘AT’ responses over the opened
socket.

• Lack of AT response can indicate a baseband crash/reboot

• Can also be used to simulate user interactions (e.g. accept a phone call)

MobiDeke: Fuzzing the GSM Protocol Stack 26/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Testcases generation and mutation
Monitoring
Report
Future enhancement

Application OS bug report
• Even though we are targeting the baseband, some messages still get parsed
by the application OS

• Can be the case for SMSs, Information Messages. . . .

MobiDeke: Fuzzing the GSM Protocol Stack 27/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Testcases generation and mutation
Monitoring
Report
Future enhancement

Logfiles: Android logcats

Some useful data...

• When something crashes, it is likely to be reported in the logcat (Android
syslogs)

Extract the information

• Fetch the logs using adb and filter this information

• Check for any known vocabulary in the log that could be related to a crash:
‘***’, ‘uncaught exception’, ‘Error Process’...

MobiDeke: Fuzzing the GSM Protocol Stack 28/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Testcases generation and mutation
Monitoring
Report
Future enhancement

Logfiles: iOS CrashReporter

• iOS CrashReporter records application bugs

• Path: /var/wireless/Library/Logs/CrashReporter

Note: On Infineon X-Gold (iPhone 1 to iPhone 3) it’s possible to save baseband
core dumps in ‘CrashReporter’ if the CORE option is enabled.

MobiDeke: Fuzzing the GSM Protocol Stack 29/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Testcases generation and mutation
Monitoring
Report
Future enhancement

The final report

Indicators

• 0: The state changed, but everything is fine

• 1: The baseband takes a little bit longer to respond

• 2: Maybe something happened (takes to long to respond, applicative crash...)

• 3: It is probably a crash (can’t talk with the baseband at all...)

• ...

You can define new indicators depending on your analysis.

MobiDeke: Fuzzing the GSM Protocol Stack 30/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Testcases generation and mutation
Monitoring
Report
Future enhancement

Sample of a crash in the report
<?xml v e r s i o n=”1.0” ?>
<report>

<i n f o rma t i ons>

<s t a r t ed>

Fr i , 07 Sep 2012 16 :18 :47
</s t a r t ed>
<f i n i s h e d>

Fr i , 07 Sep 2012 16 :21 :07
</f i n i s h e d>

</i n f o rma t i ons>

<events>

<event time=”16:18:49” i d=”0” l a s t p a y l o a d=”1658” l e v e l=”0”>
Fuzz ing (re) s t a r t e d

</event>
<event time=”16:19:52” i d=”1” l a s t p a y l o a d=”1665” l e v e l=”2”>

AT answer : Timeout !
</event>
<event time=”16:19:54” i d=”2” l e v e l=”0”>

AT i s work ing once aga in

</event>
<event time=”16:20:00” i d=”3” l a s t p a y l o a d=”1666” l e v e l=”3”>

AT Erro r

</event>
<event time=”16:20:04” i d=”4” l e v e l=”0”>

AT i s work ing once aga in

</event>
<event time=”16:20:57” i d=”5” l a s t p a y l o a d=”1674” l e v e l=”4”>

AT answer : Strange Oo !
</event>

</events>
</report>

MobiDeke: Fuzzing the GSM Protocol Stack 31/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Testcases generation and mutation
Monitoring
Report
Future enhancement

Monitoring enhancement

• Hard without a debugger: a lot of states to check

• We lately managed to get a qcombbdbg running on some phones: HTC
Desire S/Z

• It’s also possible to debug using the JTAG interface and additional hardware
(e.g.: RIFFBOX)

• With a debugger: we don’t need heuristics to detect crashes

MobiDeke: Fuzzing the GSM Protocol Stack 32/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Testcases generation and mutation
Monitoring
Report
Future enhancement

Demo!
The fuzzing platform (injecATor, OpenBTS and MobiDeke)

MobiDeke: Fuzzing the GSM Protocol Stack 33/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Summary

1 Introduction

2 Fuzzing over-the-air

3 The MobiDeke Framework

4 Conclusion

MobiDeke: Fuzzing the GSM Protocol Stack 34/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Problems

• Mostly the unstability of OpenBTS for fuzzing tests

• Deadlocked phones can require human intervention to reboot

• Did not have time to test all layers yet:

• A lot of fixes required on the monitoring part

• Checking the phone state slows down fuzzing

• We don’t have debuggers for every phone models

• A debugger is always needed to decide about exploitability

MobiDeke: Fuzzing the GSM Protocol Stack 35/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Our results

• MobiDeke is a handy way to automate fuzzing tests on GSMs

• Not a lot of bugs have been found with stateless messages

• MM INFORMATION: few DoS and applicative crashes
• TMSI RELOCATION COMMAND: few DoS
• 1 state of Call Origin: 1 crash and a lot of DoS
• LOCATION UPDATING: not tested completely, few DoS

• A fuzzing test takes time: days, weeks or months (depends on the number of
testcases and complexity)

*DoS: The phone was not responding

MobiDeke: Fuzzing the GSM Protocol Stack 36/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Todo

• There are still plenty of vectors to fuzz

• Integration with a debugger (e.g. JTAG)

• Implement state machines

• Source code not to be released at the moment

MobiDeke: Fuzzing the GSM Protocol Stack 37/38

Introduction
Fuzzing over-the-air

The MobiDeke Framework
Conclusion

Thank you! ;)
Any questions?

MobiDeke: Fuzzing the GSM Protocol Stack 38/38

	Introduction
	Fuzzing over-the-air
	The MobiDeke Framework
	Testcases generation and mutation
	Monitoring
	Report
	Future enhancement

	Conclusion

