
P A G E

CORE SECURITY
Breaking Out of VirtualBox through 3D Acceleration

Francisco Falcon (@fdfalcon)

Hack.lu 2014

October 21-24, 2014

P A G E

About me

• Exploit writer for Core Security.

• From Argentina.

• Interested in the usual stuff: reverse engineering, vulnerability
research, exploitation…

• This is my second time presenting at Hack.lu.

2

P A G E

Agenda

3

P A G E

Agenda

• Motivations and related work

• How VirtualBox implements 3D Acceleration

• Speaking the VBoxHGCM and Chromium protocols

• Chromium rendering commands

• The vulnerabilities

• The fixes

• Exploitation

• Live Demo!

• Reducing the risk of a VM breakout

• Conclusions/Q & A

4

P A G E

Motivations and related work

5

P A G E

Motivations

• Tarjei Mandt: Oracle VirtualBox Integer Overflow
Vulnerabilities (specially CVE-2011-2305: VBoxSharedOpenGL
Host Service Integer Overflow Vulnerability).

http://mista.nu/blog/2011/07/19/oracle-virtualbox-integer-
overflow-vulnerabilities/

6

http://mista.nu/blog/2011/07/19/oracle-virtualbox-integer-overflow-vulnerabilities/
http://mista.nu/blog/2011/07/19/oracle-virtualbox-integer-overflow-vulnerabilities/
http://mista.nu/blog/2011/07/19/oracle-virtualbox-integer-overflow-vulnerabilities/
http://mista.nu/blog/2011/07/19/oracle-virtualbox-integer-overflow-vulnerabilities/
http://mista.nu/blog/2011/07/19/oracle-virtualbox-integer-overflow-vulnerabilities/
http://mista.nu/blog/2011/07/19/oracle-virtualbox-integer-overflow-vulnerabilities/
http://mista.nu/blog/2011/07/19/oracle-virtualbox-integer-overflow-vulnerabilities/
http://mista.nu/blog/2011/07/19/oracle-virtualbox-integer-overflow-vulnerabilities/
http://mista.nu/blog/2011/07/19/oracle-virtualbox-integer-overflow-vulnerabilities/
http://mista.nu/blog/2011/07/19/oracle-virtualbox-integer-overflow-vulnerabilities/

P A G E

Related work

• Cloudburst: Hacking 3D (and Breaking Out of VMware) [Kostya
Kortchinsky, Black Hat US 2009]

• Virtunoid: Breaking out of KVM [Nelson Elhage, Black Hat US
2011]

• A Stitch in Time Saves Nine: A case of Multiple Operating
System Vulnerability [Rafal Wojtczuk, Black Hat US 2012]

7

P A G E

An overview of VirtualBox

8

P A G E

An overview of VirtualBox

“VirtualBox is a general-purpose full
virtualizer for x86 hardware, targeted at
server, desktop and embedded use.”

• Supported Host OS: Windows, Linux,
Mac OS X, Solaris.

• Supported Guest OS : Windows,
Linux, Solaris, FreeBSD, OpenBSD,
Mac OS X…

9

P A G E

An overview of VirtualBox

VirtualBox provides hardware-
based 3D Acceleration for
Windows, Linux and Solaris
guests.

1 0

This allows guest machines to use the host machine’s hardware to
process 3D graphics based on the OpenGL or Direct3D APIs.

P A G E

VirtualBox Guest Additions

• VirtualBox implements 3D Acceleration
through its Guest Additions (Guest Additions
must be installed on the guest OS).

• 3D Acceleration must be manually enabled in
the VM settings.

1 1

P A G E

VirtualBox Guest Additions

• The Guest Additions install a device driver named
VBoxGuest.sys in the guest machine.

• On Windows guests, this device driver can be found in the
Device Manager under the “System Devices” branch.

• VBoxGuest.sys uses port-mapped I/O to communicate with
the host.

1 2

P A G E

They warned you!

https://www.virtualbox.org/manual/ch04.html#guestadd-3d:

1 3

https://www.virtualbox.org/manual/ch04.html
https://www.virtualbox.org/manual/ch04.html
https://www.virtualbox.org/manual/ch04.html
https://www.virtualbox.org/manual/ch04.html
https://www.virtualbox.org/manual/ch04.html

P A G E

The Chromium library

1 4

P A G E

Chromium

• VirtualBox 3D Acceleration is based on
Chromium.

• Chromium is a library that allows for
remote rendering of OpenGL-based 3D
graphics.

• Client/server architecture.

• Not related at all with the Web browser!

1 5

P A G E

Chromium

• VirtualBox added support for a new protocol to Chromium:
VBoxHGCM (HGCM stands for Host/Guest Communication
Manager).

• This protocol allows Chromium clients running in the guest
machine to communicate with the Chromium server running
in the host machine.

• The VBoxHGCM protocol works through the VBoxGuest.sys
driver.

1 6

P A G E 1 7

P A G E 1 8

P A G E 1 9

P A G E 2 0

P A G E 2 1

P A G E 2 2

P A G E 2 3

P A G E

Speaking the VBoxHGCM protocol

2 4

P A G E

Speaking the VBoxHGCM protocol

• Step 1: obtain a handle to the VBoxGuest.sys device driver.

HANDLE hDevice = CreateFile("\\\\.\\VBoxGuest",

 GENERIC_READ|GENERIC_WRITE,

 FILE_SHARE_READ|FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL,

 NULL);

• No privileges needed for this at all; even guest users can open
the device!

2 5

P A G E

Speaking the VBoxHGCM protocol

• Step 2: Send a message to the VBoxGuest driver through
DeviceIoControl.

BOOL rc = DeviceIoControl(hDevice,

 VBOXGUEST_IOCTL_HGCM_CONNECT,

 &info,

 sizeof(info),

 &info,

 sizeof(info),

 &cbReturned,

 NULL);

2 6

P A G E

IoControl codes

• The VBoxGuest driver handles DeviceIoControl messages in
the VBoxGuestCommonIOCtl() function
[src/VBox/Additions/common/VBoxGuest/VBoxGuest
.cpp].

• Some of the accepted IoControl codes:
• VBOXGUEST_IOCTL_GETVMMDEVPORT

• VBOXGUEST_IOCTL_VMMREQUEST

• VBOXGUEST_IOCTL_SET_MOUSE_NOTIFY_CALLBACK

• VBOXGUEST_IOCTL_HGCM_CONNECT

• VBOXGUEST_IOCTL_HGCM_CALL

• VBOXGUEST_IOCTL_HGCM_DISCONNECT

• […]

2 7

P A G E

Connecting to the service

Connecting to the “VBoxSharedCrOpenGL” service:

 VBoxGuestHGCMConnectInfo info;

 memset(&info, 0, sizeof(info));

 info.Loc.type = VMMDevHGCMLoc_LocalHost_Existing;

 strcpy(info.Loc.u.host.achName, "VBoxSharedCrOpenGL");

 rc = DeviceIoControl(hDevice,

 VBOXGUEST_IOCTL_HGCM_CONNECT, &info,

 sizeof(info), &info, sizeof(info),

 &cbReturned, NULL);

2 8

P A G E

Speaking the Chromium protocol

2 9

P A G E

crOpenGL guest functions

• include/VBox/HostServices/VBoxCrOpenGLSvc.h has
definitions for Input Buffer types, available Chromium guest
functions and parameters count:

/* crOpenGL guest functions */

#define SHCRGL_GUEST_FN_WRITE (2)

#define SHCRGL_GUEST_FN_READ (3)

#define SHCRGL_GUEST_FN_WRITE_READ (4)

#define SHCRGL_GUEST_FN_SET_VERSION (6)

#define SHCRGL_GUEST_FN_INJECT (9)

#define SHCRGL_GUEST_FN_SET_PID (12)

#define SHCRGL_GUEST_FN_WRITE_BUFFER (13)

#define SHCRGL_GUEST_FN_WRITE_READ_BUFFERED (14)

3 0

P A G E 3 1

Sending an HGCM Call message to the “VBoxSharedCrOpenGL”
service:

 CRVBOXHGCMSETPID parms;

 memset(&parms, 0, sizeof(parms));

 parms.hdr.u32ClientID = u32ClientID;
 parms.hdr.u32Function = SHCRGL_GUEST_FN_SET_PID;
 parms.hdr.cParms = SHCRGL_CPARMS_SET_PID;

 parms.u64PID.type = VMMDevHGCMParmType_64bit;
 parms.u64PID.u.value64 = GetCurrentProcessId();

 BOOL rc = DeviceIoControl(hDevice,
 VBOXGUEST_IOCTL_HGCM_CALL, &parms,
 sizeof(parms), &parms, sizeof(parms),
 &cbReturned, NULL);

P A G E

HGCM_CALL handling

• When the VBoxGuest.sys driver receives a
VBOXGUEST_IOCTL_HGCM_CALL message, it does the
following:

• It copies our Input Buffer from the guest to the host

• It performs a call to host code

• It copies back the results (changed params and
buffers) from the host to the guest

3 2

P A G E

Starting a Chromium communication

A Chromium client must start this way:

• Open the VBoxGuest.sys driver.

• Send a VBOXGUEST_IOCTL_HGCM_CONNECT message.

• Send a VBOXGUEST_IOCTL_HGCM_CALL message, calling the
SHCRGL_GUEST_FN_SET_VERSION function.

• Send a VBOXGUEST_IOCTL_HGCM_CALL message, calling the
SHCRGL_GUEST_FN_SET_PID function.

3 3

P A G E

Starting a Chromium communication

• After that, the Chromium client can start sending
VBOXGUEST_IOCTL_HGCM_CALL messages, specifying which
crOpenGL guest function it wants to invoke.

Final steps:

• Send a VBOXGUEST_IOCTL_HGCM_DISCONNECT message.

• Close the handle to the VBoxGuest.sys driver.

3 4

P A G E

Chromium Rendering Commands

3 5

P A G E

Rendering commands

• The Chromium client (VM) sends a bunch of rendering
commands (opcodes + data for those opcodes).

• The Chromium server (Hypervisor) interprets those opcodes +
data, and stores the result into a frame buffer.

• The content of the frame buffer is transmitted back to the
client in the VM.

3 6

P A G E 3 7

CRMessageOpcodes struct

P A G E

Rendering commands

• That sequence can be performed by the Chromium client in
different ways:

1. Single-step: send the rendering commands and receive the
resulting frame buffer with one single message.

2. Two-step: send a message with the rendering commands
and let the server interpret them, then send another
message requesting the resulting frame buffer.

3. Buffered: send the rendering commands and let the server
store them in a buffer without interpreting it, then send a
second message to make the server interpret the buffered
commands and return the resulting frame buffer.

3 8

P A G E

Buffered Mode

SHCRGL_GUEST_FN_WRITE_BUFFER:

• Allocates a buffer that is not freed until the Chromium client
sends a message to invoke the
SHCRGL_GUEST_FN_WRITE_READ_BUFFERED function.

• This allows us to allocate (and deallocate) at will an arbitrary
number of buffers of arbitrary size and with arbitrary
contents in the address space of the hypervisor process that
runs on the host machine (A.K.A. Heap Spray)

• We’ll make use of this later!

3 9

P A G E

crUnpack() function

• The function crUnpack() handles the opcodes + data sent by a
Chromium client through a CR_MESSAGE_OPCODES
message.

• The code for this function is generated by the Python script
located at
src/VBox/HostServices/SharedOpenGL/unpacker/u
npack.py.

• Unpack.py parses a file named APIspec.txt containing the
definition of the whole OpenGL API, and generates C code to
dispatch Chromium opcodes to the corresponding OpenGL
functions.

4 0

P A G E 4 1

void crUnpack(const void *data, const void *opcodes,
 unsigned int num_opcodes, SPUDispatchTable *table)
{
 [...]

 unpack_opcodes = (const unsigned char *)opcodes;
 cr_unpackData = (const unsigned char *)data;

 for (i = 0 ; i < num_opcodes ; i++)
 {
 /*crDebug("Unpacking opcode \%d", *unpack_opcodes);*/

 switch(*unpack_opcodes)
 {

 case CR_ALPHAFUNC_OPCODE: crUnpackAlphaFunc(); break;
 case CR_ARRAYELEMENT_OPCODE: crUnpackArrayElement(); break;
 case CR_BEGIN_OPCODE: crUnpackBegin(); break;
 [...]

P A G E

The Vulnerabilities

4 2

P A G E

CVE-2014-0981, CVE-2014-0982

crVBoxServerClientWrite() ends up calling crNetDefaultRecv() [net.c]
before calling crUnpack():

void
crNetDefaultRecv(CRConnection *conn, CRMessage *msg,
unsigned int len){
[...]

 switch (pRealMsg->header.type) {
 [...]

 case CR_MESSAGE_WRITEBACK:
 crNetRecvWriteback(&(pRealMsg->writeback));

 return;
 case CR_MESSAGE_READBACK:
 crNetRecvReadback(&(pRealMsg->readback), len);

 return;
 [...]

4 3

P A G E

Network pointers

• Turns out that crNetRecvWriteback() and
crNetRecvWriteback() are the implementation of Chromium’s
so-called NETWORK POINTERS.

• From Chromium’s documentation page:

"Network pointers are simply memory addresses that
reside on another machine.[...] The networking layer
will then take care of writing the payload data to the
specified address."

4 4

http://chromium.sourceforge.net/doc/howitworks.html

P A G E 4 5

P A G E

Vulnerability Nº 1: CVE-2014-0981

4 6

P A G E

CVE-2014-0981

static void
crNetRecvReadback(CRMessageReadback *rb, unsigned int
len)
{
 int payload_len = len - sizeof(*rb);
 int *writeback;
 void *dest_ptr;
 crMemcpy(&writeback, &(rb->writeback_ptr), sizeof(
writeback));
 crMemcpy(&dest_ptr, &(rb->readback_ptr), sizeof(
dest_ptr));

 (*writeback)--;
 crMemcpy(dest_ptr, ((char *)rb) + sizeof(*rb),
payload_len);
}
 4 7

P A G E

CVE-2014-0981

• CVE-2014-0981: VirtualBox crNetRecvReadback Memory
Corruption Vulnerability

• The attacker from the VM fully controls both function params:
CRMessageReadback *rb, unsigned int len

• It’s a write-what-where memory corruption primitive by
design, within the address space of the hypervisor.

4 8

P A G E

Vulnerability Nº 2: CVE-2014-0982

4 9

P A G E

CVE-2014-0982

static void

crNetRecvWriteback(CRMessageWriteback *wb)

{

 int *writeback;

 crMemcpy(&writeback, &(wb->writeback_ptr), sizeof(
writeback));

 (*writeback)--;

}

5 0

P A G E

CVE-2014-0982

• CVE-2014-0982: VirtualBox crNetRecvWriteback Memory
Corruption Vulnerability

• The attacker from the VM fully controls the function
parameter: CRMessageReadback *rb

• Another memory corruption primitive by design, within the
address space of the hypervisor.

5 1

P A G E

Vulnerability Nº 3: CVE-2014-0983

5 2

P A G E

CVE-2014-0983

When the opcode being processed is
CR_VERTEXATTRIB4NUBARB_OPCODE (0xEA), the function to
be invoked is crUnpackVertexAttrib4NubARB():

switch(*unpack_opcodes) {

[...]

case CR_VERTEXATTRIB4NUBARB_OPCODE:
 crUnpackVertexAttrib4NubARB(); break;

[...]

5 3

P A G E

CVE-2014-0983

crUnpackVertexAttrib4NubARB() reads 5 values from the opcode
data and just invokes cr_unpackDispatch.VertexAttrib4NubARB()
with those 5 attacker-controlled values as arguments:

static void crUnpackVertexAttrib4NubARB(void)

{

 GLuint index = READ_DATA(0, GLuint);

 GLubyte x = READ_DATA(4, GLubyte);

 GLubyte y = READ_DATA(5, GLubyte);

 GLubyte z = READ_DATA(6, GLubyte);

 GLubyte w = READ_DATA(7, GLubyte);

 cr_unpackDispatch.VertexAttrib4NubARB(index, x, y, z, w);

 INCR_DATA_PTR(8);

}

5 4

P A G E

CVE-2014-0983

void SERVER_DISPATCH_APIENTRY
crServerDispatchVertexAttrib4NubARB(GLuint index, GLubyte x,
GLubyte y, GLubyte z, GLubyte w)

{

 cr_server.head_spu->dispatch_table.VertexAttrib4NubARB(index,
x, y, z, w);

 cr_server.current.c.vertexAttrib.ub4[index] = cr_unpackData;

}

5 5

P A G E

CVE-2014-0983

• CVE-2014-0983: VirtualBox
crServerDispatchVertexAttrib4NubARB Memory Corruption
Vulnerability

• Allows the attacker to corrupt arbitrary memory with a
pointer to attacker-controlled data.

5 6

P A G E

CVE-2014-0983

The same vulnerability affects several functions whose code is
generated by the crserverlib/server_dispatch.py Python script:

CR_VERTEXATTRIB1DARB_OPCODE [0xDE]-> crServerDispatchVertexAttrib1dARB()
CR_VERTEXATTRIB1FARB_OPCODE [0xDF]-> crServerDispatchVertexAttrib1fARB()
CR_VERTEXATTRIB1SARB_OPCODE [0xE0]-> crServerDispatchVertexAttrib1sARB()
CR_VERTEXATTRIB2DARB_OPCODE [0xE1]-> crServerDispatchVertexAttrib2dARB()
CR_VERTEXATTRIB2FARB_OPCODE [0xE2]-> crServerDispatchVertexAttrib2fARB()
CR_VERTEXATTRIB2SARB_OPCODE [0xE3]-> crServerDispatchVertexAttrib2sARB()
CR_VERTEXATTRIB3DARB_OPCODE [0xE4]-> crServerDispatchVertexAttrib3dARB()
CR_VERTEXATTRIB3FARB_OPCODE [0xE5]-> crServerDispatchVertexAttrib3fARB()
CR_VERTEXATTRIB3SARB_OPCODE [0xE6]-> crServerDispatchVertexAttrib3sARB()
CR_VERTEXATTRIB4NUBARB_OPCODE [0xEA]-> crServerDispatchVertexAttrib4NubARB()
CR_VERTEXATTRIB4DARB_OPCODE [0xEF]-> crServerDispatchVertexAttrib4dARB()
CR_VERTEXATTRIB4FARB_OPCODE [0xF0]-> crServerDispatchVertexAttrib4fARB()
CR_VERTEXATTRIB4SARB_OPCODE [0xF2]-> crServerDispatchVertexAttrib4sARB()

5 7

P A G E

The Fixes

5 8

P A G E

The fixes

CVE-2014-0981 and CVE-2014-0982 (design errors): support for
CR_MESSAGE_WRITEBACK and CR_MESSAGE_READBACK
messages was removed from the host-side code [changeset
50437].

#ifdef IN_GUEST

 case CR_MESSAGE_WRITEBACK:

 crNetRecvWriteback(&(pRealMsg->writeback));

 [...]

 case CR_MESSAGE_READBACK:

 crNetRecvReadback(&(pRealMsg->readback), len);

#endif

5 9

https://www.virtualbox.org/changeset/50437/vbox
https://www.virtualbox.org/changeset/50437/vbox
https://www.virtualbox.org/changeset/50437/vbox

P A G E

The fixes

CVE-2014-0983: The server_dispatch.py Python script now
outputs an extra conditional statement that checks if index is
within the bounds of the array [changeset 50441].

condition = "if (index < CR_MAX_VERTEX_ATTRIBS)"

[...]

print '\t%s' % (condition)

print '\t{'

print '\n\tcr_server.head_spu->dispatch_table.%s(%s);' %
(func_name, apiutil.MakeCallString(params))

print "\t\tcr_server.current.c.%s.%s%s = cr_unpackData;" %
(name,type,array)

6 0

https://www.virtualbox.org/changeset/50441/vbox
https://www.virtualbox.org/changeset/50441/vbox
https://www.virtualbox.org/changeset/50441/vbox

P A G E

Exploitation

6 1

P A G E

Exploitation

• One of the design flaws is pretty ideal for exploitation: it’s a
write-what-where primitive.

• On a host system with ASLR, we still need to figure out where
to write.

6 2

P A G E

Exploitation

VertexAttrib4NubARB vulnerability to the rescue!

void SERVER_DISPATCH_APIENTRY
crServerDispatchVertexAttrib4NubARB(GLuint index, GLubyte x,
GLubyte y, GLubyte z, GLubyte w)

{

 cr_server.head_spu->dispatch_table.VertexAttrib4NubARB(index,
x, y, z, w);

 cr_server.current.c.vertexAttrib.ub4[index] = cr_unpackData;

}

cr_server is a global variable (CRServer struct, as defined in
src/VBox/GuestHost/OpenGL/include/cr_server.h) holding a
lot of info on the state of the Chromium server.

6 3

P A G E

Exploitation

• We can write to a memory address RELATIVE to the
beginning of the cr_server.current.c.vertexAttrib.ub4
array.

• Since cr_server is a global variable, that array is located
in the .data section of the VBoxSharedCrOpenGL.dll
module.

• We can safely corrupt memory within that DLL, without
having to worry about its base address being
randomized due to ASLR on the host side!

6 4

P A G E

Exploitation

• So far, with opcode 0xEA we can write a pointer to data we
control (the opcode data) into a memory address relative to
the base address of an array that belongs to a global struct
variable.

• Anything interesting to overwrite?

• The cr_server global variable (CRServer struct) contains
(among many other fields) a field SPU *head_spu;

6 5

P A G E

Exploitation

• The pointer stored at cr_server.head_spu is dereferenced to
access a dispatch_table field (which efectively is a table of
function pointers) in the functions that handle several
opcodes, for example, opcode 0x02:

/*Function that handles opcode CR_BEGIN_OPCODE (0x02) */

void SERVER_DISPATCH_APIENTRY crServerDispatchBegin(GLenum mode
)

{

 crStateBegin(mode);

 cr_server.head_spu->dispatch_table.Begin(mode);

}

6 6

P A G E

Exploitation

• That’s it! We have achieved code execution on the host!

• Step 1: send opcode 0xEA; opcode data must contain a crafted
index argument to overwrite cr_server.head_spu; now you
control the function pointers table.

• Step 2: send opcode 0x02 to hijack the execution flow of the
hypervisor.

6 7

P A G E

Need to bypass ASLR?

• VirtualBox versions 4.2.x ship VBoxREM32.dll compiled
without ASLR support -> base address 0x61380000

• VirtualBox versions 4.3.x ship VBoxREM64.dll compiled
without ASLR support -> base address 0x6D380000

6 8

P A G E

Exploitation

6 9

P A G E

Can’t rely on non-ASLR modules

7 0

P A G E

Exploitation with full ASLR bypass

7 1

P A G E 7 2

“Infoleaks are made,
not found”

- Halvar Flake -

P A G E

Exploitation with full ASLR bypass

• cr_server global variable holds all the information about the
state of the Chromium server.

• It holds an array of currently connected clients:

typedef struct {

[...]

int numClients;

CRClient *clients[CR_MAX_CLIENTS];

[...]

} CRServer;

7 3

P A G E

Exploitation with full ASLR bypass

The CRClient struct (cr_server.h) contains this interesting field:

typedef struct _crclient {

int spu_id;

CRConnection *conn; /**< network connection from the client */

[...]

} CRClient;

7 4

P A G E

Exploitation with full ASLR bypass

The CRConnection struct (cr_net.h) contains some juicy data:

struct CRConnection {

[...]

 uint8_t *pHostBuffer;

 uint32_t cbHostBuffer;

[...]

};

pHostBuffer and cbHostBuffer define address and size of the
resulting frame buffer that will be copied to the guest.

7 5

P A G E

Exploitation with full ASLR bypass

• So, we could overwrite cr_server.clients[0] with the pointer to
our opcode data (cr_unpackData).

• cr_unpackData will be a fake CRClient struct.

• The 2nd DWORD of our fake CRClient struct will be
interpreted as the CRConnection *conn field.

• We could make the CRConnection *conn field point to data
controlled by us (a fake CRConnection struct).

• Finally, our fake CRConnection struct will contain crafted
pHostBuffer and cbHostBuffer fields.

7 6

P A G E 7 7

P A G E 7 8

P A G E 7 9

P A G E

Exploitation with full ASLR bypass

• We still have a problem to solve! (caused by ASLR)

• We need the CRConnection *conn field point to data
controlled by us (a fake CRConnection struct).

• How can we place a fake CRConnection struct at a known
address (within the address space of the hypervisor on the
Host side)?

8 0

P A G E

Exploitation with full ASLR bypass

• Heap Spray to the rescue!

• Remember that rendering commands sequence can be
performed in Single-Step, Two-Step, or Buffered Mode.

• In Buffered Mode, we can allocate an arbitrary number of
buffers with arbitrary size and content within the address
space of the hypervisor with the
SHCRGL_GUEST_FN_WRITE_BUFFER function.

8 1

P A G E 8 2

P A G E

Exploitation with full ASLR bypass

• We need to put arbitrary data (fake CRConnection struct) at
an arbitrary address.

• First option: allocate multiple 1 Mb buffers, repeating a 64 Kb
pattern (M. Dowd and A. Sotirov, 2008).

• Second (and lazy) option: allocate multiple 1 Mb buffers, write
the desired data to an arbitrary address by using the first
vulnerability.

8 3

P A G E

Infoleak

• The memory region specified by address pHostBuffer and size
cbHostBuffer is copied to the Guest in function
crVBoxServerInternalClientRead [server_main.c]:

*pcbBuffer = pClient->conn->cbHostBuffer;

if (*pcbBuffer) {

 CRASSERT(pClient->conn->pHostBuffer);

 crMemcpy(pBuffer, pClient->conn->pHostBuffer, *pcbBuffer);

 pClient->conn->cbHostBuffer = 0;

}

8 4

P A G E

Infoleak

• So by controlling the pHostBuffer and cbHostBuffer fields of
our fake CRConnection struct , we control the address and
size of the data to be copied back to the guest.

• This way we have created an information leak that will allow
us to read arbitrary hypervisor memory from the Guest!

• The problem: where to read from? (Remember ASLR)

8 5

P A G E

Leaking what?

• One of the many fields of the global struct cr_server is
CRHashTable *barriers.

• We can overwrite cr_server.barriers with the pointer to our
opcode data (cr_unpackData). cr_unpackData will be a fake
CRHashTable struct (hash.c).

• cr_server.barriers is used when processing opcode 0xF7
(extended opcode) with subopcode 0x08.

8 6

P A G E

Leaking what?

void SERVER_DISPATCH_APIENTRY
crServerDispatchBarrierExecCR(GLuint name){

[...]

barrier =
(CRServerBarrier*)crHashtableSearch(cr_server.barriers, name);

[...]

barrier->waiting[barrier->num_waiting++] = cr_server.run_queue;

[...]

}

• We control both arguments in the call to crHashtableSearch
[hash.c].

• crHashtableSearch() returns an arbitrary pointer controlled by
us.

8 7

P A G E

Leaking what?

• Since we fully control the value of the barrier pointer, this line
means that we can also fully control the address where
cr_server.run_queue will be stored by crafting a fake
CRServerBarrier at a known address:

barrier->waiting[barrier->num_waiting++] = cr_server.run_queue;

• So far we have managed to store the pointer
cr_server.run_queue (type RunQueue *)in a known address,
so now we can leak it to the Guest side.

8 8

P A G E 8 9

P A G E 9 0

P A G E 9 1

P A G E

Bye bye ASLR!

• Now we can calculate the base address of
VBoxSharedCrOpenGL.dll. Bye bye ASLR on the Host side!

• Go build your ROP chain and break out of the hypervisor!

9 2

P A G E

Live Demo!

9 3

P A G E

Live Demo!

9 4

APC (Advanced Persistent Calculator)

P A G E

Reducing the risk of a VM breakout

9 5

P A G E

Reducing the risk of a VM breakout

• Remove calc.exe from your Host OS.

9 6

P A G E

Reducing the risk of a VM breakout

So, how can we mitigate the risk of a VirtualBox VM breakout?

• The exploitation mitigations provided by Microsoft EMET
running in the Host OS increase the difficulty of exploiting
memory corruption vulnerabilities affecting the hypervisor.

• The VirtualBox Guest Additions open up an extra road to
attack the host from the guest. You can avoid installing them
in order to reduce the exposure (Easier said than done, since
they are needed for some nice usability features).

9 7

P A G E

Reducing the risk of a VM breakout

• The more features you enable to improve the Guest/Host
integration (shared clipboard, shared folders, 3D acceleration,
etc) the more attack surface you are exposing to the Guest.

• Again, you give up a lot on usability if you decide not to use
these features.

9 8

P A G E

Conclusions

9 9

P A G E

Conclusions

• We tend to make a strong assumption about virtualization:
that programs running inside a VM are isolated from the host
OS. VM breakouts eliminate that boundary.

• It turns out that virtual machines are just another piece of
software, and as such they are not immune to vulnerabilities.

1 0 0

P A G E

Conclusions

• With enough work, sometimes memory corruption
vulnerabilities can be leveraged to create information leaks,
ultimately leading to the bypass of protections provided by
the OS, like ASLR.

1 0 1

P A G E

Conclusions

• VirtualBox added a library to the hypervisor without even
thinking about its security.

• Having a bytecode interpreter in the hypervisor running
untrusted bytecode coming from a VM is not a good idea.

• Sometimes, even legit OpenGL apps crash the VM.

• Go grab the Proof-of-Concept!
http://www.coresecurity.com/grid/advisories

1 0 2

http://www.coresecurity.com/grid/advisories

P A G E

 Thank you!

1 0 3

@fdfalcon ffalcon@coresecurity.com

Questions?

mailto:ffalcon@coresecurity.com

