

We're struggling to keep up
A brief history of Browser Security Features

about:frederik

Frederik Braun

FluxFingers Team Member

Security Engineer at Mozilla

fbraun@mozilla.com

https://frederik-braun.com

@freddyb

mailto:fbraun@mozilla.com
https://frederik-braun.com/
https://twitter.com/freddyb

Why am I here?

http://www.mozilla.org/about/manifesto.en.html

Table Of Contents

Introduction
The Past

The Present
The Future
Conclusion

Introduction

The Web and the Browser

The Web is the platform

The Evolution of the Web

Timeline from http://www.evolutionoftheweb.com/

http://www.evolutionoftheweb.com/

XSS is the new Buffer Overflow

Browsers are Everywhere

Screenshot from a http://techadvisor.co.uk BMW Video

http://techadvisor.co.uk/

The Past

“Web browsers' access control policies have evolved
piecemeal in an ad-hoc fashion with the

introduction of new browser features. This has
resulted in numerous incoherencies“

Kapil Singh, Alexander Moshchuk, Helen J. Wang, and Wenke Lee. On the incoherencies in web
browser access control policies, (Security and Privacy (SP), 2010 IEEE Symposium)

Piecemeal or “Whac a Mole”

Picture from “Bob B. Brown” on Flickr -
https://secure.flickr.com/photos/beleaveme/

https://secure.flickr.com/photos/beleaveme/

The Past (in a nutshell)

Problem Band Aid

HTTP is Stateless Cookies (1994)

Cookies are plain-text HTTPS (1994)

HTTPS is opt-in Strict Transport Security (HSTS) in 2009

HSTS needs first-contact Browser preloads HSTS in 2012

Summarizing

The Present

Secure Hosting of Uploaded Content

Fixing Cross-Site Scripting

How to include potentially
untrusted content

Give frames access to the things
that are really only necessary

The Principle of not-so-much Authority

Iframe Sandbox

<iframe src="http://example.com" sandbox />

Iframe Sandbox

<iframe src="http://example.com"
sandbox="allow-scripts" />

XSS is still hard to fix

My name is <script>alert(1)</script>

Fixing XSS once and for all?

Content Security Policy (CSP)!

Applying CSP

<script>

// fancy animation

</script>

<script src="fancy_animation.js"></script>➡

Using CSP

Content-Security-Policy: default-src: 'self';
script-src: 'self' https://cdn.example.com/;

object-src: 'none'

CSP 2.0: Nonces for Dynamic Inline Scripts

script-src: 'nonce-blahblahblah'

&

<script nonce="blahblahblah">
// dynamic generated JavaScript…

</script>

CSP 2.0: Hashes for static third-party Scripts

script-src: 'sha256-blahblahblah'

&

<script>
// static, third-party JavaScript…

</script>

Free CSP Introduction & Development Tools!

https://speakerdeck.com/mikewest/towards-a-post-xss-world-jsconf-eu-2013
https://people.mozilla.org/~mgoodwin/presentations/20140712/template.html

HTTPS Public Key Pinning

Fixing DOM-Based Cross-Site Scripting

Untrusted, but oh so fast CDNs

The Future

The Situation with Certificate
Authorities is not great

This is a request to add the CA root certificate for Honest Achmed's Used Cars and Certificates. The requested
information as per the CA information checklist is as follows:

Name: Honest Achmed's Used Cars and Certificates

Website URL: www.honestachmed.dyndns.org

Organizational type: Individual (Achmed, and possibly his cousin Mustafa, who knows a bit about computers).

Primary market / customer base: Absolutely anyone who'll give us money.

Impact to Mozilla Users: Achmed's business plan is to sell a sufficiently large number of certificates as quickly
as possible in order to become too big to fail (see "regulatory capture"), at which point most of the rest of this
application will become irrelevant.

 Request: Add Honest Achmed's root certificate

Why do we allow every CA out
there to create a valid certificate

for all domains?

HTTPS Public Key Pinning (HPKP)

Public-Key-Pins: pin-sha256="…";
 max-age=15768000; includeSubDomains

Wait a moment, we can fix XSS with
Content Security Policy, but what

about DOM-based XSS?

DOM Based XSS

el.innerHTML = "<input type='text' value='" +
searchFromURLParams() + "' />"

Style Injections & Content Exfiltration

http://www.slideshare.net/x00mario/stealing-the-pie

ECMAScript6 Template Strings: Interpolation

var x = 1;
var y = 2;
`${ x } + ${ y } = ${ x + y}` // "1 + 2 = 3"

Examples from the ESWiki at tc39wiki.calculist.org

http://tc39wiki.calculist.org/es6/template-strings/#

ECMAScript6 Template Strings: Multiline

var s = `a
 b
 c`;
assert(s == 'a\n b\n c');

Examples from the ESWiki at tc39wiki.calculist.org

http://tc39wiki.calculist.org/es6/template-strings/#

ECMAScript6 Template Strings: Tagging

function tag(strings, ...values) {
 assert(strings[0] == 'a');
 assert(strings[1] == 'b');
 assert(values[0] == '42');
 Return 'whatever';
}
tag `a${ 42 }b` // "whatever"

Examples from the ESWiki at tc39wiki.calculist.org

http://tc39wiki.calculist.org/es6/template-strings/#

ECMAScript6 Template Strings: Tagging

function tag(strings, ...values) {
 assert(strings[0] == 'a');
 assert(strings[1] == 'b');
 assert(values[0] == '42');
 Return 'whatever';
}
tag `a${ 42 }b` // "whatever"

This gives us an
array of all
Interpolated
values!

This gives us an
array of all
Interpolated
values!

Examples from the ESWiki at tc39wiki.calculist.org

http://tc39wiki.calculist.org/es6/template-strings/#

DEMO

Let's look at this JS REPL for the DEMO

https://js-quasis-libraries-and-repl.googlecode.com/svn/trunk/index.html

Speed trumps Security

<script src="//code.jquery.com/jquery-1.11.0.min.js"></script>

Locking it down with Subresource Integrity

<script src="//code.jquery.com/jquery-1.11.0.min.js"
integrity="ni:///sha-256;C6CB9UYIS9UJeqinPHWTHVqh_E1uhG5Twh-

Y5qFQmYg?ct=application/javascript"></script>

https://w3c.github.io/webappsec/specs/subresourceintegrity/

Subresource Integrity and Fallbacks

<script src="/static/lib/jquery-1.11.0.min.js"
noncanonical-src="//code.jquery.com/jquery-1.11.0.min.js"

integrity="ni:///sha-256;C6CB9UYIS9UJeqinPHWTHVqh_E1uhG5Twh-
Y5qFQmYg?ct=application/javascript"></script>

https://w3c.github.io/webappsec/specs/subresourceintegrity/

Conclusion

 The Browser can aid the Website

Conclusion

Timeline from http://www.evolutionoftheweb.com/

http://www.evolutionoftheweb.com/

The Evolution of Web Security

github.com/st3fan/moz-stooge

https://github.com/st3fan/moz-stooge

github.com/st3fan/moz-stooge

https://github.com/st3fan/moz-stooge

Thank you for listening!

Frederik Braun

fbraun@mozilla.com

@freddyb

#security on irc.mozilla.org

Obligatory Red Panda photo by Wikipedia user Aconcagua, CC-BY-SA-3.0

mailto:fbraun@mozilla.com
https://twitter.com/freddyb
https://en.wikipedia.org/wiki/File:Tiergarten_Schoenbrunn_Kleiner_Panda_2.jpg
https://commons.wikimedia.org/wiki/User:Aconcagua

Further reading and Thanks
● Mike West and Brad Hill have given presentations about browser security features in the past.

● Stefan Arentz explained Web Security 101.

● Mark Goodwin talked about how to make Content Security Policy (CSP) work for you at SteelCon in Sheffield.

● Devdatta Akhawe et al. wrote about Privilege Separation for HTML5 Applications

● Mario Heiderich's research & white papers

● My Blog post on X-Frame-Options (joint work with Mario Heiderich)

● This presentation also borrows from my diploma thesis which itself builds on great research as listed in its Reference section
(p. 67).

● Thanks to Pascal “Pepo” Szewczyk, Tim Taubert, Romain Gauthier, and Christian Heilmann for reviewing.

● Sequence Diagrams made with https://bramp.github.io/js-sequence-diagrams/

https://blog.mozilla.org/security/2013/12/12/on-the-x-frame-options-security-header/
https://www.youtube.com/watch?v=WljJ5guzcLs
http://vimeo.com/77795293
http://www.computerist.org/
http://devd.me/
http://mario.heideri.ch/
https://blog.mozilla.org/security/2013/12/12/on-the-x-frame-options-security-header/
https://frederik-braun.com/pages/publications.html
http://elektrowecker.de/
http://timtaubert.de/
http://monkeypatch.me/blog/
http://christianheilmann.com/
https://bramp.github.io/js-sequence-diagrams/

