
Risky USBusiness
Say ”what the fuzz.”... If you can’t say it, you can’t do it.

Jordan BOUYAT
jbouyat@quarkslab.com

@la_F0uin3

Fernand LONE-SANG
flonesang@quarkslab.com

Hack.lu, October 22, 2014

Context USB basics Fuzzing approaches Our tool Results Conclusion

Starting points

Observation

USB ubiquity

Workstations;

Interactive machines;

Printers;

Embedded systems;

Etc.

Massively used, but internals are not well known.

2/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Starting points

Interest

Possible attacks

USB devices are attack vectors:

Physical access in limited time;

Device deliberately left behind;

Attacks on isolated networks.

3/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Summary

1 USB basics

2 Fuzzing approaches

3 Our tool

4 Results

5 Conclusion

4/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Table of contents

1 USB basics

2 Fuzzing approaches

3 Our tool

4 Results

5 Conclusion

5/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

A hierarchical protocol

Hierarchy

Figure: USB topology

An ordered topology

1 host controller: 127 devices

One hub can be connected
to another

Connections and transfers
are initiated by a host only
(except OTG)

6/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

A hierarchical protocol

Device logical view

EP 0
IN

OUT

EP1
IN

EP3
OUT

EP1
OUT

EP2
IN

EP3
IN

Interface 0 Interface 1

USB Controller

OS drivers

User application An interface provides a function

It contains endpoints

Endpoints are logical links between the
device and the host drivers

They are unidirectional. Four kinds of
transfer are available:

Control
Interrupt
Bulk
Isochronous

7/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

A hierarchical protocol

Descriptors

Data structures that describe the device:

1 Its characteristics (USB version, VID, PID...);

2 Its interfaces (type, endpoint numbers...);

3 Its endpoints (direction, transfert type...).

A configuration descriptor corresponds to different associations of
configuration.

8/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

A hierarchical protocol

Standard requests

Descriptors are retrieved during the enumeration process.

USB Setup
80

bmRequestType 0x80

06

bRequest GET DESCRIPTOR

00 01

wValue 0x0100

00 00

wIndex 0x00

40 00

wLength 0x40

USB Device Descriptor Response
12

bLength 18

01

bDescriptorType 1

00 02

bcdUSB 0x0200

00

bDeviceClass 0x00

00

bDeviceSubClass 0x00

00

bDeviceProtocol 0x00

40

bMaxPacketSize0 64

3c 41

idVendor 0x413c

07 21

idProduct 0x2107

78 01

bcdDevice 0x0178

01

iManufacturer 1

02

iProduct 2

03

iSerialNumber 3

01

bNumConfigurations1

9/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Enumeration

Enumeration

10/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Table of contents

1 USB basics

2 Fuzzing approaches

3 Our tool

4 Results

5 Conclusion

11/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Virtualized environments

Qemu: configuration 1

Dumb fuzzer: fuzzing the forwarded traffic between a virtual machine
and a physical device.

Experimented by: Fabien Perigaud

12/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Virtualized environments

Qemu: configuration 2

A virtual fuzzer device

Experimented by: MWR Labs

13/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Virtualized environments

Qemu: configuration 3

USB traffic is forwarded to the host userland by the virtual device. Then
it’s fuzzed and re-injected.

Experimented by: Tobias Mueller and Sergej Schumilo (vUSBf)

14/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Virtualized environments

Feedbacks

Pros:

Restoration of the system to
a healthy state using
snapshots;

Better instrumentation and
monitoring;

Easy to parallelize;

No special hardware needed.

Cons:

Not all OS can be
virtualized;

Possible bugs in USB
implementation in the
hypervisor.

15/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Hardware environment

Possibilities

Dedicated hardware

Pros: Low level capture/replay, scripting language
Cons: Expensive, inflexible API
Example: Totalphase Beagle USB*

Microcontrollers and FPGAs

Pro: Cheap
Con: You need to re-flash each time you make a modification of the code
Examples: PIC, AVR (like Teensy with LUFA library), Daisho for the
FPGA

A compromise: the Facedancer?

16/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Hardware environment

Facedancer

Introduction

Developped by Travis Goodspeed

Contains a serial/USB adapter, a MSP430 microcontroller and a
USB controller

Allows USB device emulation by controlling it with Python scripts
running on a remote machine

Figure: http://int3.cc/

17/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Hardware environment

Limitations

Only 3 endpoints

No isochronous transfer support

Low data rate because of the serial connection over USB

No USB3 support

However, the Facedancer is enough to begin to fuzz.

18/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Table of contents

1 USB basics

2 Fuzzing approaches

3 Our tool

4 Results

5 Conclusion

19/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Features

Architecture

Figure: USB fuzzing architecture

20/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Features

Usage

21/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Features

Technical details

Base

Based on the open source tool Umap developed by Andy Davis

Umap is based on Travis Goodspeed’s code

22/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Features

Contribution

Modifications

PCAP capture and replay

Mutation of replayed data with Radamsa

Frame choice, bytes and fuzzing patterns to apply

Fuzzing monitor with crash report

Step by step debug mode

23/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Table of contents

1 USB basics

2 Fuzzing approaches

3 Our tool

4 Results

5 Conclusion

24/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Bugs

Results on Windows 8.1

HID parsing

Other bytes values which trigger the same crash of Andy Davis:
Not exploitable

Mass storage device

Wrong control of endpoints number in USBSTOR.sys:
Not exploitable

25/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Study case

Mutated descriptor

Craft of a configuration descriptor
providing an interface that
contains 0 endpoint.
Result: crash

26/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Study case

Enumeration

27/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Study case

Crash analysis

We move in USBSTOR_SelectConfiguration.

Figure: USBSTOR.sys : USBSTOR_SelectConfiguration+EE

28/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Study case

Crash analysis

Figure: usbd.sys : USBD_CreateConfigurationRequestEx+113

Duplication of the USB_INTERFACE_DESCRIPTOR.bNumEndpoints field.
29/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Study case

Crash analysis

Figure: USBSTOR.sys : USBSTOR_SelectConfiguration+11

Duplication of USBD_INTERFACE_INFORMATION structure.
30/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Study case

Crash origin in x64

ECX ←− endpoint number
ECX ←− ECX − 1
R8←− 3 ∗ RCX
R8←− R8 ∗ 8 + 80
memset(@dest, 0x0, R8)

If endpoint number is 0 :
ECX ←− 0− 1 = 0xffffffff
R8←− 0xffffffff ∗ 3 = 0x0002fffffffd
R8←− 0x0002fffffffd ∗ 8 + 80 = 0x1800000038
memset(@dest, 0x0, 0x1800000038)

31/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Study case

x86 problem

EAX ←− endpoint number
EAX ←− ECX − 1
EAX ←− EAX ∗ 0x14 + 0x38
memset(@dest, 0x0, EAX)

If endpoint number is 0 :
EAX ←− 0− 1 = 0xffffffff
EAX ←− 0xffffffff ∗ 0x14 + 0x38 = 0x24
memset(@dest, 0x0, 0x24)

The last 20 bytes of the _URB_SELECT_CONFIGURATION structure are not
initialized.

32/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Table of contents

1 USB basics

2 Fuzzing approaches

3 Our tool

4 Results

5 Conclusion

33/35

http://www.quarkslab.com

Context USB basics Fuzzing approaches Our tool Results Conclusion

Conclusion and prospects

Currently

Functional capture sources: Facedancer and VMware

Host fuzzing is working

To do

Improve performances:

FPGA
ARM board with OTG port for capture/replay using USBGadget

Implement device fuzzing

Add other capture sources

Add USB3 support

34/35

http://www.quarkslab.com

 contact@quarkslab.com I @quarkslab.com

Questions?
Thanks to all the QuarksLab team and particularly Fernand Lone-Sang,
Kevin Szkudlapski and Damien Aumâıtre.

	Context
	Starting points

	USB basics
	A hierarchical protocol
	Enumeration

	Fuzzing approaches
	Virtualized environments
	Hardware environment

	Our tool
	Features

	Results
	Bugs
	Study case

	Conclusion

