They RHate Us "Cause
They Alnt Us

How We Broke the Internet

Netanel Rubin

Secure Coding

. Code development practice

- Mitigates basic vulnerabllities
- XSS
- SQL Injection
. Made by security experts, for non-security
experts
- Mainly developers

. In practice, commonly used as the only
measure of security in the development cycle

How Do | Secure Coding??

. There are “Secure Coding” courses
- Alot of courses

.- Developers usually choose the same course as
their peers

- Resulting in the same course being the only
one taught in the same company

- Most developers usually pass only 1 or 2 of these
courses in their entire career

Secure Coding Problems

- Most developers in a company pass the same
course
. Same course — Same mistakes
- Secure Coding focuses on input sanitization

vulnerabillities
- Neglecting false assumptions and logical vulnerabilities

. Secure Coding provides a misguided sense of

security
- Resulting in less CR, both internally and externally

Secure Coding Problems

Secure coding gives you the
feeling you are secure

Without being secure

But | guess | need to prove that...

How To Prove A Point 101

How can | prove Secure Coding is a fallacy?
Using 3 things

O-days
. 0-days
—Fop-Secret-exploits
. 0-days

Case Study 1 - MediaWiki

The most popular Wiki platform
Open Source — PHP

Runs on Wikipedia.org
And 25,000 more sites

Type of Check Implemented?
User Input Sanitization X
Dangerous Functions

Language Quirks

False Assumptions

http://wikipedia.org/

MediaWiki — The integer in the box

. MediaWiki relies on external binaries
For converting images
Analyzing documents
... and more

// Make sure the page parameter is a valid number
if (Sparams['page'] > $image->pageCount ())
Sparams ['page'] = S$Simage->pageCount () ;
else if(Sparams|['page'] < 1)
Sparams |['page'] = 1;

exec (' /usr/bin/convert' . // Execute the convert command

Sparams ['page']

MediaWiki — The integer in the box

- What happens when ° "Is a string?
Var dump ((int) '0'); int (0)
Var dump ((int) '123"); int (123)
Var dump ((int) 'abcde'); int (0)
Va:_dump((int) '123abcde’) ; int (123)

Va:_dump((int) '"l, ifconfig'); int (1)

Case Study 1 - MediaWiki

. CVE-2014-1610
. Unauthenticated RCE on MediaWiIki

Stop the Buffer Overflows.
Stop the Vulnerabilities.

Start Writing Secure Code.

Become an ECSP

10

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1610

Case Study 2 - vBulletin

The most popular Forum platform
Commercial — PHP

Runs on ubuntuforums.orq
And 32,000 more sites

Type of Check Implemented?
User Input Sanitization v 4
Dangerous Functions X

Language Quirks
False Assumptions

11

http://ubuntuforums.org/

vBulletin — | Didn’t See-rialize That Coming

vBulletin developers are aware of dangerous
functions

eval

exec

popen

vBulletin — | Didn’t See-rialize That Coming

Unserialize Creates a PHP value from a stored
representation

s:12:"hello, world"; "Hello, world"

a:0:{} array ()

11!

0:9:"ClassName" :0:{} ClassName{ }

When an object is unserialized, several “magic”
methods are automatically called
___wakeup() — Right after the unserialize operation
__destroy() — When the object is destroyed
__toString() — When the object is converted to a string

13

vBulletin — | Didn’t See-rialize That Coming

Using these “magic” methods, we can expand our
attack surface

As a bonus, because we control the object, we
control its properties as well

So down the rabbit hole we go!

vBulletin — | Didn’t See-rialize That Coming

We create an "vB vURL" object with the following
“ destruct” method:

function destruct ()
{
if (file exists(Sthis->tmpfile))
{
@unlink (Sthis->tmpfile) ;
}

Because the “tmpfile” property is used in an
“unlink()” call

It IS considered as a string

15

vBulletin — | Didn’t See-rialize That Coming

If “tmpfile” was an object, © toString()”
would have been called

So we use a “vB View” object as our
“tmpfile” property
Which executes this code:

public function toString()

{

return Sthis->render () ;

}

vBulletin — | Didn’t See-rialize That Coming

From “render()” we jump through several
functions

Until we finally reach this “render()” code:

public function render () ({

StemplateCode=StemplateCache->getTemplate (Sthis->template) ;

deval ($StemplateCode) ;

Guess who controls $templateCode?

Case Study 2 - vBulletin

CVE-2015-7808
Unauthenticated RCE on vBulletin

© SAFECode

] 1, Software Assurance Forum for Excellence in Code

@@ Driving Security and Integrity

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7808

Case Study 3 - Bugzilla

The most popular Bug Tracker
Open Source — Perl

Runs on bugzilla.mozilla.org
And 130 more major projects

Type of Check Implemented?
User Input Sanitization v 4
Dangerous Functions V4

Language Quirks X

False Assumptions

19

http://bugzilla.mozilla.org/
https://www.bugzilla.org/installation-list/

Bugzilla — Exploiting, The Quirking Way

Perl features an expression called “lists”
Well known and documented

@array = (1, 2, 'a', 'b', 'c');
%dict = (1 => 2, 'a' => 'b");

Bugzilla — Exploiting, The Quirking Way

A list inside a dictionary can create new dictionary
pairs

Known for Perl Pros, partially documented

@list = ('f ', ‘lol', 'wat');
$hash = {'a' => 'b’,

‘¢’ => 'd’,

'e' => @list
}s 'lol' => 'wat’

s

Bugzilla — Exploiting, The Quirking Way

A list can be created from the user input
Barely known and NOT documented

index.cgi?foo=1&bar=a

index.cgi?foo=1&foo=28&bar=a&bar=b

22

Bugzilla — Exploiting, The Quirking Way

Some privileges are given via an email regex
Example: *@mozilla.org can view confidential Firefox
bugs

when a new user registers, his email address Is

validated using a token sent to the mailbox

23

Bugzilla — Exploiting, The Quirking Way

After the validation takes place, this code happens:

my $otheruser = Bugzilla::User->create({
login name => $login name,
realname => $cgi->param('realname’),
cryptpassword => $password});

$login_name => The email address validated (extracted from the DB)
$password => The user defined password (as a scalar)

$cgi->param(‘realname’) => Bingo!

Bugzilla — Exploiting, The Quirking Way

a=confirm _new account&t=/REGISTRATION TOKEN]&passwdl=Passwordl!&passwd2=Passwordl!

&-=Lolzor&-=login_na me&-=admin@bugzilla.com

my $otheruser = Bugzilla::User->create({
login_name => $login name,
realname => 'Lolzor',
login _name => 'admin@bugzilla.com'
cryptpassword => $password});

- We control the email address
. We control the privileges group we join

25

Case Study 3 - Bugzilla

CVE-2014-15/72

Authentication mechanism bypass on
Bugzilla

PRACTICAL PROTECTION

.. STF » UL

SEGURE,(’
CODING

]
HOW, TO(~ EIX NERABILITIES Qa
IN'REAL- IF ’ N

For more information about this vuln, watch my 31C3 talk “The Perl Jam”

https://media.ccc.de/v/31c3_-_6243_-_en_-_saal_1_-_201412292200_-_the_perl_jam_exploiting_a_20_year-old_vulnerability_-_netanel_rubin
https://media.ccc.de/v/31c3_-_6243_-_en_-_saal_1_-_201412292200_-_the_perl_jam_exploiting_a_20_year-old_vulnerability_-_netanel_rubin

Case Study 4 - Magento

The most popular eCommerce platform
Open Source — PHP

Runs on (part of) ebay.com
And 270,000 more sites

Type of Check Implemented?
User Input Sanitization v 4
Dangerous Functions V4

Language Quirks 4

False Assumptions X

http://ebay.com/

Magento — Keep Going Forwarded

Magento developers made sure regular users can't
access the admin panel

They checked the user session
ney checked its privileges
ney checked that the user is not disabled

28

Magento — Keep Going Forwarded

But how does Magento does all that?

SrequestedActionName = Srequest->getActionName () ;

if (Suser) { // A user exist
Suser->reload(); // Check validity of user

if (! Suser || ! Suser->getId()) { // No user
if (Srequest->getPost('login')) { // login
TRY TO LOGIN

}
if (! Srequest->getParam('forwarded')) {

Srequest->setController ('login');

' I/index.php/admin/?forwarded="

29

Magento — Keep Going Forwarded

Magento developers used the “forwarded”
parameter as an internal redirect mechanism

Used to allow components to create their own
authentication mechanisms

Unfortunately, they forgot this parameter can also
be controlled by the user

Using HTTP Parameters

. This effectively allows anyone to
access the admin panel

Case Study 4 - Magento

CVE-2015-139/7, CVE-2015-1398,
CVE-2015-1399

Authentication mechanism bypass
SQLI

BEST PRACTICES Se((«'
ZASSEEN \WRITING i

aB SECURE 2

GoTEm

http://blog.checkpoint.com/2015/04/20/analyzing-magento-vulnerability/

Case Study 5 - WordPress

The most popular CMS/Blogging platform
Open Source — PHP

WordPress is massively deployed
It handles 126M users a month!

Type of Check Implemented?
User Input Sanitization
Dangerous Functions

Language Quirks

False Assumptions

CALS

WordPress - How WordPress Works

- Any user can access the admin panel
- But using a capabilities system, not every admin page

Subscriber Administrator

read_page v 4 v 4
read post V4 v 4
edit_posts X v 4
install_themes X v 4
edit_plugins X V4

33

WordPress - Exploiting The Un-Exploitable

. We assume we are subscribers at the site
. The lowest role possible
. We can only read public posts and pages
. Can’t even comment

- We need more capabilities!

WordPress - Exploiting The Un-Exploitable

How does WordPress check our capabilities?

if (current_user_can('edit posts')) // Can we edit posts?

if (current_user can('edit post', 1)) // Can we edit post ID 17

Each role has specific permissions

‘current_user _can()’ maps a requested capabillity
Into the appropriate role permission

And returns true/false based on our permissions

- But how? 35

WordPress - Exploiting The Un-Exploitable

‘current_user _can()’Is a giant SWITCH statement

Let’'s look on the “edit_post” capability check

Responsible for checking if the user can edit a specific
post

case 'edit post': // Edit Post/Page
case 'edit page':
$post = get post($args[0]); // Get the post

// If the post doesn't exist, no capabilities needed
if (empty($post))
break;

If the post |ID doesn’t exist => no permissions
needed!

36

WordPress - Exploiting The Un-Exploitable

We can access code that checks capabillities
for a post ID, but doesn’t check it exists

But we want to be able to edit a post that
does exist!

How can we do that?

WordPress - The Need For Speed

. Using the capabilities bug, we could access
the post editing code

function edit post(Spost data = null) {
if (empty (Spost data))
$post data = &$ POST;

$post ID = (int) Spost datal['post ID']; // Get the post ID
Spost = get post($post ID); // Get the post

$success = wp update post(S$post data); // Update the post
in the DB

}

38

WordPress - The Need For Speed

But before the DB update occurs, a post ID
validation check takes place

function wp update post (Spostarr = array(), Swp error = false) {
// First, get all of the original fields.
$post = get post($postarr['ID'], ARRAY A);

if (is null(Spost)) {
if (Swp error)
return new WP Error('invalid post', 'Invalid post');

return O;

39

WordPress - The Need For Speed

We’re stuck :(

We need an INVALID post ID for ‘edit _post()’
But a VALID post ID for ‘wp update post()’

Walit...

What if we could create the post between
these function calls?

WordPress - The Need For Speed

WordPress doesn’t allow subscribers to create a
post

In fact, when we try to do so it blocks our access
by calling ‘wp dashboard quick press()”

switch (Saction) {
case 'post-quickdraft-save':
if (! current user can('edit posts'))

$error msg = "You don’t have access to add new posts.";

// 1f there’s an error (no token, no capabilities)
if (Serror msg)

return wp dashboard quick press(Serror msg);

41

WordPress - The Need For Speed

But what does ‘wp dashboard quick press()’
do?

It creates a post.

function wp_dashboard quick press($error_msg = false) {

$post = get default post to edit('post' , true);

42

WordPress - The Need For Speed

Now we can create a post
But how do we create it exactly at the right time??

We will delay the script
By executing a lot of DB queries

But again, how?

43

WordPress - The Need For Speed

foreach ((array) $post data['tax _input'] as $taxonomy => $terms) {
// Make sure the terms variable i
$terms = explode(',', trim($te

array

\))s

// Fetch the required terms f
foreach ($terms as $term) {

$ term = get terms($term));
}

We control the taxonomy array
Each element is inserted into ‘get terms()’
‘get_terms()’ executes an SQL SELECT query
We control the array => we control the number of elements
=> \We control the number of SELECT queries

44

WordPress - The Need For Speed

Using the race condition, we were able to edit a
real post

1. We send an “edit post” request with invalid post |D
containing our large taxonomy array

2. While the script executes, we send a “create post”
request, which creates that post

3. When the taxonomy queries are done, the post
already exists in the DB

Allowing us to update it as we wish

WordPress - PE’ing Like It’s 1999

Editing a post doesn’t compromise anything

But this Privilege Escalation granted us access to
more code

More code => More attack surface
More attack surface => More vulnerabilities

Using that attack surface, we discovered a:
Persistent XSS on the front page of the site
SQL Injection, allowing us to compromise the DB

- Basically, total WordPress PWNGE

Case Study 5 - WordPress

- CVE-2015-5623 !Llﬁrunnﬁttgggﬁ:mvrfnws
. Privilege Escalation [
- CVE-2015-2213
- SQL Injection
- CVE-2015-5714
- Shortcode XSS
- CVE-2015-5715
- Post Publish Privilege Escalation

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5623
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2213
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5714
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5715

Why Even Secure Coding??

Secure coding does not guarantee secure code
It provides another layer of security

Developers ARE NOT hackers

Because they don’t have the time to
Because they don’t have the budget to
Because they (sometimes) don’t have the skillset to

48

So What Should | Do?

- HIRE HACKERS
- TO DO THE HACKING

Penetration Testing
Code Reviews
Consulting

DO NOT rely on Secure Coding alone!

Thanks!

50

