
1

2

• Code development practice

• Mitigates basic vulnerabilities

• XSS

• SQL Injection

• Made by security experts, for non-security

experts

• Mainly developers

• In practice, commonly used as the only

measure of security in the development cycle

Secure Coding

3

• There are “Secure Coding” courses

• A lot of courses

• Developers usually choose the same course as

their peers

• Resulting in the same course being the only

one taught in the same company

• Most developers usually pass only 1 or 2 of these

courses in their entire career

How Do I Secure Coding??

4

• Most developers in a company pass the same

course

• Same course – Same mistakes

• Secure Coding focuses on input sanitization

vulnerabilities

• Neglecting false assumptions and logical vulnerabilities

• Secure Coding provides a misguided sense of

security

• Resulting in less CR, both internally and externally

Secure Coding Problems

5

• Secure coding gives you the

feeling you are secure

• Without being secure

• But I guess I need to prove that…

Secure Coding Problems

6

• How can I prove Secure Coding is a fallacy?

• Using 3 things

• 0-days

• 0-days

• Top-Secret exploits

• 0-days

How To Prove A Point 101

7

Type of Check Implemented?

User Input Sanitization

Dangerous Functions

Language Quirks

False Assumptions

• The most popular Wiki platform

• Open Source – PHP

• Runs on Wikipedia.org

• And 25,000 more sites

Case Study 1 - MediaWiki

http://wikipedia.org/

8

// Make sure the page parameter is a valid number

if ($params['page'] > $image->pageCount())

$params['page'] = $image->pageCount();

else if($params['page'] < 1)

$params['page'] = 1;

exec('/usr/bin/convert' . // Execute the convert command

...

$params['page']

...

);

• MediaWiki relies on external binaries

• For converting images

• Analyzing documents

• ... and more

MediaWiki – The integer in the box

9

int(1)

int(123)

int(0)

int(123)

int(0)

Var_dump((int) '1; ifconfig');

Var_dump((int) '123abcde');

Var_dump((int) 'abcde');

Var_dump((int) '123');

Var_dump((int) '0');

• What happens when ‘page’ is a string?

MediaWiki – The integer in the box

10

• CVE-2014-1610

• Unauthenticated RCE on MediaWiki

Case Study 1 - MediaWiki

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1610

11

Type of Check Implemented?

User Input Sanitization

Dangerous Functions

Language Quirks

False Assumptions

• The most popular Forum platform

• Commercial – PHP

• Runs on ubuntuforums.org

• And 32,000 more sites

Case Study 2 - vBulletin

http://ubuntuforums.org/

12

• vBulletin developers are aware of dangerous

functions

• eval

• exec

• popen

vBulletin – I Didn’t See-rialize That Coming

13

ClassName{ }

array()

"Hello, world"

O:9:"ClassName":0:{}

a:0:{}

s:12:"hello, world";

• When an object is unserialized, several “magic”

methods are automatically called

• __wakeup() – Right after the unserialize operation

• __destroy() – When the object is destroyed

• __toString() – When the object is converted to a string

• Unserialize Creates a PHP value from a stored

representation

vBulletin – I Didn’t See-rialize That Coming

14

• Using these “magic” methods, we can expand our

attack surface

• As a bonus, because we control the object, we

control its properties as well

• So down the rabbit hole we go!

vBulletin – I Didn’t See-rialize That Coming

15

function __destruct()

{

if (file_exists($this->tmpfile))

{

@unlink($this->tmpfile);

}

}

vB_vURL::__destruct()

• Because the “tmpfile” property is used in an

“unlink()” call

• It is considered as a string

• We create an “vB_vURL” object with the following

“__destruct” method:

vBulletin – I Didn’t See-rialize That Coming

16

public function __toString()

{

return $this->render();

}

vB_View::__toString()

• If “tmpfile” was an object, “__toString()”

would have been called

• So we use a “vB_View” object as our

“tmpfile” property

• Which executes this code:

vBulletin – I Didn’t See-rialize That Coming

17

public function render() {

…

$templateCode=$templateCache->getTemplate($this->template);

…

@eval($templateCode);

}

Guess who controls $templateCode?

• From “render()” we jump through several

functions

• Until we finally reach this “render()” code:

vBulletin – I Didn’t See-rialize That Coming

18

• CVE-2015-7808

• Unauthenticated RCE on vBulletin

Case Study 2 - vBulletin

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7808

19

Type of Check Implemented?

User Input Sanitization

Dangerous Functions

Language Quirks

False Assumptions

Perl

• The most popular Bug Tracker

• Open Source –

• Runs on bugzilla.mozilla.org

• And 130 more major projects

Case Study 3 - Bugzilla

http://bugzilla.mozilla.org/
https://www.bugzilla.org/installation-list/

20

%dict = (1 => 2, 'a' => 'b');

@array = (1, 2, 'a', 'b', 'c');

• Perl features an expression called “lists”

• Well known and documented

Bugzilla – Exploiting, The Quirking Way

21

$hash = {'a' => 'b',

'c' => 'd',

'e' => 'f',

'lol' => 'wat'

};

@list = ('f', 'lol', 'wat');

$hash = {'a' => 'b',

'c' => 'd',

'e' => @list

};

• A list inside a dictionary can create new dictionary

pairs

• Known for Perl Pros, partially documented

Bugzilla – Exploiting, The Quirking Way

22

index.cgi?foo=1&foo=2&bar=a&bar=b

index.cgi?foo=1&bar=a

• A list can be created from the user input

• Barely known and NOT documented

Bugzilla – Exploiting, The Quirking Way

23

• Some privileges are given via an email regex

• Example: *@mozilla.org can view confidential Firefox

bugs

• when a new user registers, his email address is

validated using a token sent to the mailbox

Bugzilla – Exploiting, The Quirking Way

24

$login_name => The email address validated (extracted from the DB)

$password => The user defined password (as a scalar)

$cgi->param('realname') => Bingo!

my $otheruser = Bugzilla::User->create({

login_name => $login_name,

realname => $cgi->param('realname'),

cryptpassword => $password});

• After the validation takes place, this code happens:

Bugzilla – Exploiting, The Quirking Way

25

• We control the email address

• We control the privileges group we join

Bugzilla – Exploiting, The Quirking Way

a=confirm_new_account&t=[REGISTRATION _TOKEN]&passwd1=Password1!&passwd2=Password1!
&realname=Lolzor

my $otheruser = Bugzilla::User->create({

login_name => $login_name,

realname => 'Lolzor',

login_name => 'admin@bugzilla.com'

cryptpassword => $password});

&realname=login_name&realname=admin@bugzilla.com

26

• For more information about this vuln, watch my 31C3 talk “The Perl Jam”

• CVE-2014-1572

• Authentication mechanism bypass on

Bugzilla

Case Study 3 - Bugzilla

https://media.ccc.de/v/31c3_-_6243_-_en_-_saal_1_-_201412292200_-_the_perl_jam_exploiting_a_20_year-old_vulnerability_-_netanel_rubin
https://media.ccc.de/v/31c3_-_6243_-_en_-_saal_1_-_201412292200_-_the_perl_jam_exploiting_a_20_year-old_vulnerability_-_netanel_rubin

27

Type of Check Implemented?

User Input Sanitization

Dangerous Functions

Language Quirks

False Assumptions

• The most popular eCommerce platform

• Open Source – PHP

• Runs on (part of) ebay.com

• And 270,000 more sites

Case Study 4 - Magento

http://ebay.com/

28

• Magento developers made sure regular users can’t

access the admin panel

• They checked the user session

• They checked its privileges

• They checked that the user is not disabled

Magento – Keep Going Forwarded

29

$requestedActionName = $request->getActionName();

if ($user) { // A user exist

$user->reload(); // Check validity of user

}

if (! $user || ! $user->getId()) { // No user

if ($request->getPost('login')) { // login

TRY_TO_LOGIN

}

if (! $request->getParam('forwarded')) {

$request->setController('login');

}

}

• But how does Magento does all that?

Magento – Keep Going Forwarded

30

• Magento developers used the “forwarded”

parameter as an internal redirect mechanism

• Used to allow components to create their own

authentication mechanisms

• Unfortunately, they forgot this parameter can also

be controlled by the user

• Using HTTP Parameters

• This effectively allows anyone to

access the admin panel

Magento – Keep Going Forwarded

31

• CVE-2015-1397, CVE-2015-1398,

CVE-2015-1399

• Authentication mechanism bypass

• SQLI

• 2 LFIs

• RFI

Case Study 4 - Magento

http://blog.checkpoint.com/2015/04/20/analyzing-magento-vulnerability/

32

Type of Check Implemented?

User Input Sanitization

Dangerous Functions

Language Quirks

False Assumptions

• The most popular CMS/Blogging platform

• Open Source – PHP

• WordPress is massively deployed

• It handles 126M users a month!

Case Study 5 - WordPress

33

Subscriber Administrator

read_page

read_post

edit_posts

install_themes

edit_plugins

• Any user can access the admin panel

• But using a capabilities system, not every admin page

WordPress - How WordPress Works

34

• We assume we are subscribers at the site

• The lowest role possible

• We can only read public posts and pages

• Can’t even comment

• We need more capabilities!

WordPress - Exploiting The Un-Exploitable

35

if(current_user_can('edit_post', 1)) // Can we edit post ID 1?

if(current_user_can('edit_posts')) // Can we edit posts?

• Each role has specific permissions

• ‘current_user_can()’ maps a requested capability

into the appropriate role permission

• And returns true/false based on our permissions

• But how?

• How does WordPress check our capabilities?

WordPress - Exploiting The Un-Exploitable

36

case 'edit_post': // Edit Post/Page

case 'edit_page':

$post = get_post($args[0]); // Get the post

// If the post doesn't exist, no capabilities needed

if (empty($post))

break;

• If the post ID doesn’t exist => no permissions

needed!

• ‘current_user_can()’ is a giant SWITCH statement

• Let’s look on the “edit_post” capability check

• Responsible for checking if the user can edit a specific

post

WordPress - Exploiting The Un-Exploitable

37

• We can access code that checks capabilities

for a post ID, but doesn’t check it exists

• But we want to be able to edit a post that

does exist!

• How can we do that?

WordPress - Exploiting The Un-Exploitable

38

function edit_post($post_data = null) {

if (empty($post_data))

$post_data = &$_POST;

$post_ID = (int) $post_data['post_ID']; // Get the post ID

$post = get_post($post_ID); // Get the post

…

$success = wp_update_post($post_data); // Update the post

in the DB

}

• Using the capabilities bug, we could access

the post editing code

WordPress - The Need For Speed

39

function wp_update_post($postarr = array(), $wp_error = false){

// First, get all of the original fields.

$post = get_post($postarr['ID'], ARRAY_A);

if (is_null($post)) {

if ($wp_error)

return new WP_Error('invalid_post', 'Invalid post');

return 0;

}

...

}

• But before the DB update occurs, a post ID

validation check takes place

WordPress - The Need For Speed

40

• We’re stuck :(

• We need an INVALID post ID for ‘edit_post()’

• But a VALID post ID for ‘wp_update_post()’

• Wait…

• What if we could create the post between

these function calls?

WordPress - The Need For Speed

41

switch($action) {

case 'post-quickdraft-save':

if (! current_user_can('edit_posts'))

$error_msg = "You don’t have access to add new posts.";

// If there’s an error (no token, no capabilities)

if ($error_msg)

return wp_dashboard_quick_press($error_msg);

• WordPress doesn’t allow subscribers to create a

post

• In fact, when we try to do so it blocks our access

by calling ‘wp_dashboard_quick_press()’:

WordPress - The Need For Speed

42

function wp_dashboard_quick_press($error_msg = false) {

...

$post = get_default_post_to_edit('post' , true);

...

}

• But what does ‘wp_dashboard_quick_press()’

do?

• It creates a post.

WordPress - The Need For Speed

43

• Now we can create a post

• But how do we create it exactly at the right time?

• We will delay the script

• By executing a lot of DB queries

• But again, how?

WordPress - The Need For Speed

44

foreach ((array) $post_data['tax_input'] as $taxonomy => $terms) {

// Make sure the terms variable is an array

$terms = explode(',', trim($terms, " \n\t\r\0\x0B,"));

// Fetch the required terms from the DB

foreach ($terms as $term) {

$_term = get_terms($term));

}

}

• We control the taxonomy array

• Each element is inserted into ‘get_terms()’

• ‘get_terms()’ executes an SQL SELECT query

• We control the array => we control the number of elements

• => We control the number of SELECT queries

WordPress - The Need For Speed

45

• Using the race condition, we were able to edit a

real post

1. We send an “edit post” request with invalid post ID

• containing our large taxonomy array

2. While the script executes, we send a “create post”

request, which creates that post

3. When the taxonomy queries are done, the post

already exists in the DB

• Allowing us to update it as we wish

WordPress - The Need For Speed

46

• Editing a post doesn’t compromise anything

• But this Privilege Escalation granted us access to

more code

• More code => More attack surface

• More attack surface => More vulnerabilities

• Using that attack surface, we discovered a:

• Persistent XSS on the front page of the site

• SQL Injection, allowing us to compromise the DB

• Basically, total WordPress PWNGE

WordPress - PE’ing Like It’s 1999

47

• CVE-2015-5623

• Privilege Escalation

• CVE-2015-2213

• SQL Injection

• CVE-2015-5714

• Shortcode XSS

• CVE-2015-5715

• Post Publish Privilege Escalation

Case Study 5 - WordPress

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5623
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2213
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5714
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5715

48

• Secure coding does not guarantee secure code

• It provides another layer of security

• Developers ARE NOT hackers

• Because they don’t have the time to

• Because they don’t have the budget to

• Because they (sometimes) don’t have the skillset to

Why Even Secure Coding??

49

• HIRE HACKERS

• TO DO THE HACKING
• Penetration Testing

• Code Reviews

• Consulting

• DO NOT rely on Secure Coding alone!

So What Should I Do?

50

Thanks!

