
API design for cryptography

Frank Denis - @jedisct1

Who’s that creepy guy?
Frank Denis 
@jedisct1

https://primulinus.com

Application security, cryptography, malware analysis,
protocol design, computer vision/digital image processing…

OSS zealot

Spends way too much time on Twitter

https://primulinus.com

Crypto is everywhere
And its domain extends way beyond mere encryption.

AES

Blowfish

CAST-128

Camellia

DESGOST

IDEA
RC2

RC4

RC5
RC6

SEED

3DES

Twofish

AES

Blowfish

CAST-128

Camellia

DESGOST

IDEA
RC2

RC4

RC5
RC6

SEED

3DES

Twofish

CBC

CCM

CFB

CTR

EAX

ECB
GCM

OCB

OFB

XTS

AES

Blowfish

CAST-128

Camellia

DESGOST

IDEA
RC2

RC4

RC5
RC6

SEED

3DES

Twofish

CBC

CCM

CFB

CTR

EAX

ECB
GCM

OCB

OFB

XTS

56 bits

128 bits

192 bits

256 bits

AES

Blowfish

CAST-128

Camellia

DESGOST

IDEA
RC2

RC4

RC5
RC6

SEED

3DES

Twofish

CBC

CCM

CFB

CTR

EAX

ECB
GCM

OCB

OFB

XTS

56 bits

128 bits

192 bits

256 bits

MAC
Padding

Yadi Yada

How to encrypt stuff
in PHP?

Reference
documentation

USING crypto is
hard, too

Crypto is hard

Developers are not to
blame

This leads to security disasters.

Crypto is often a
necessary, but tiny piece

in an application

Developers expect things to just work. 
Like all other pieces their application depends on.

Webcrypto API

Noooooo…

…ooo…

…ooo…

…ooo…

…ooo…

…ooo…

…ooo…

…ooo…

…ooo…

…ooooooo!

…ooo…
…ooo…

NaCl
Funded by the European Commission, released in 2010.

Focused on high-speed cryptography 
and improving usability.

Restricted to a small set of primitives and parameters
chosen by experts

High-level APIs for common operations

Optimized for the host it was compiled on, using tricks of
the C language to save extra CPU cycles

3 years later: adoption
rate remains very low

State-of-the-start, simple, highly secure, high-speed
cryptography!

2013: libsodium

Warning: this is not a talk
about libsodium

Libsodium just happens to be a good case to look at,
because its API has evolved a lot over time.

Let’s see why, how, 
and some takeaways from the past 4 years

Slow version of NaCl: 
Instant success!

Usability was the #1 problem
to solve in cryptography

Not speed

Not security

¯_(ツ)_/¯

Cryptography makes devices communicate securely.

Cross-platform support is no more an option.

Today’s minimum expectations:

Linux
MacOS

iOS
Android

Windows (Visual Studio)
Embedded systems

Javascript / WebAssembly

Today’s applications are written using a combination of
programming languages.

APIs designed for a specific
language are problematic.

Macros and pointer arithmetic don’t play
well with (not(C | C++))

Expose everything as
a function

crypto_box_KEYBYTES -> crypto_box_keybytes()

Package maintainers
are your best friends

How developers want to
install dependencies today:

pkg_add, apt-get, brew, pacman, choco…

One pre-built, universal package.

Mainstream build systems suck. All of them.

But package maintainers know how to use them.

And adoption of your project depends on package
maintainers.

Key idea behind NaCl/libsodium: expose
high-level APIs for common operations

“I want to encrypt a message”

“I want to verify that a message 
hasn’t been tampered with”

“I want to store a password”
(and stay cool if my company name ever ends up on haveibeenpwned.com)

http://haveibeenpwned.com

Simple functions that keep the
amount of user-supplied

parameters down to a minimum

crypto_box_seal(c, “message”, 7, secret_key)

Nobody reads the f*
documentation

What experts want: all the gory details about the chosen
primitives, constructions and parameters

What everybody else want: example code, code snippets
to copy/paste

Also keep in mind that for most people, 
a “secret key” means “a password”

Provide examples, *then* explain:

Watch how people use
your APIs in their own

projects

Watch yourself struggle
when using that very API

in your own projects

How libraries are used in
real-world projects

crypto_box(): everybody writes wrappers.

crypto_sign(): everybody writes wrappers. 
Vulnerability in early Golang bindings due to a

misunderstanding of the API.

OpenSSL: libtls + a bazillion incompatible abstraction layers
in all programming languages. Either close to the metal and

dangerous, or completely different from the original API.

If people write wrappers,
your API could be improved

Watch what people are
building with your APIs

Watch for recurring
questions on Github,
Stackoverflow, etc.

If something is not
available out of the box,
people will reinvent it.

So, implement it.

“It’s only 1 or 2 trivial lines of
code, I’m not gonna add yet

another set of APIs just for that
[very common feature request]”

/me, not so long ago.

Reality check

• Adding a trivial function is not always bloat. It can be well
worth it.

• It will improve code clarity, prevent bugs.

• It will save you from having to answer the same questions
over and over again.

• It will make users aware that this operation is actually
possible.

Libsodium examples
• crypto_box_keygen() to create a secret key.

• crypto_box_seal() to delete the secret key after
encryption.

• crypto_kdf() for key derivation.

• randombytes_deterministic() for deterministic
random numbers.

All of these are small and trivial functions, yet turned out to be welcome additions.

High-level APIs frustrate
power users

Expose low-level APIs as well, with access to more
parameters.

Documentation should remain focused on high-level APIs.

Do not expose specific
implementations, 

or you’ll be screwed later.

Does it solve a common
problem impossible to

solve with the current APIs?

Adding new primitives, new constructions:

Adding new operations

Build a distinct project, maintained independently.
Experiment with new APIs. Wait for feedback. Watch how

these APIs are being used.

Or if people use them at all.

Look at how people solved similar problems. Tweak the
prototype. Use-it in your own apps. Tweak it again.

Eventually, port it to the main project (or not).

Example: blobcrypt

Watch how people use
your APIs in their own

projects

Watch yourself struggle
when using that very API

in your own projects

Again:

Nonces (IVs)
Supplement the secret key.

Must be unique for a given key.

The security of most nonce-based ciphers
can be totally destroyed if not.

Shall a crypto API require
nonces from applications?

Yes:
• Some protocols mandate specific nonces
•Nonces can be used to avoid replay attacks/associate

questions with responses in non-pipelined protocols
•Come on, anyone can generate random data and

maintain counters!

No:
•Users are too stupid to generate nonces (that’s what

“misuse resistance” stands for, right?) 
— Not exactly.

Why “No” should be the
answer today:

• Requires redundant code, that APIs could avoid.

• People don’t have time to read documentation. Documentation can
be misleading or incomplete.

• Maintaining counters is complicated in today’s world where apps run
in the cloud, in multiple containers sharing the same secret keys.

• Different ciphers have different requirements and security guarantees.
Random nonces may not be secure. Ditto for counters. Protocols
defining nonce constructions may be broken. APIs should hide these
details and do the right thing instead of blaming users for “misuse”.

• iOT/embedded systems: safely generating unique/random numbers
may not be possible at all.

Krack

CVE-2017-13077

CVE-2017-13078

CVE-2017-13079

CVE-2017-13080
CVE-2017-13081

CVE-2017-13082

CVE-2017-13083

CVE-2017-13084

CVE-2017-13085

CVE-2017-13086

CVE-2017-13087

CVE-2017-13088

Context separation

Reusing a secret key for
different purposes can have
catastrophic implications.

Applications will not do that, right?

It may not be obvious at all:

Shall we blame the
developers?

Or could APIs prevent that?

Modern crypto APIs should
consider context separation.

As of today, no major library does.

Key exchange
Insufficient: provide a DH function.

Actually worse: provide a DH function + a lot of
documentation about how to use it right.

Better in theory: use TLS.

Hell’s kitchen: reimplement a well-known AKE.

Playing with fire: invent a custom protocol.

Juggling with unlocked hand grenades blind-folded:
reimplement TLS.

Limitations

Limitations
No Practical

(from an API perspective)

Documentation make library developers feel guilt-free,  
but doesn’t fix actual problems.

libhydrogen

Started as a lightweight crypto library
for microcontrollers/constrained

environments.

Also an opportunity to design new APIs
based on lessons from the past, and

current trends in cryptography.

Key concepts:
• Everything is built upon only two modern cryptographic building

blocks: the Gimli permutation and the Curve25519 elliptic curve.

• Concise, consistent, easy-to-use, hard-to-misuse high-level API.

• One key size for all operations.

• Context (domain separation) required by virtually all APIs. One
context size for all operations.

• Do not assume that a CSPRNG is available, or works as expected.

• Implement what applications frequently use in other libraries.

A single API for all your
hashing needs

HMAC construction
Hash function for short messages
Hash function with 128 bit output
Hash function with 256 bit output
Hash function with 512 bit output
XOF or KDF + stream cipher

One generic hashing API

Initial libhydrogen prototype: siphash128 + blake2S +
blake2SX

Today: one sponge function

Zero changes to the API

Encryption

Don’t ask applications for a nonce

Automatically attach a synthetic nonce
to the ciphertext

“misuse” resistant

Encryption
Why do applications need explicit nonces/AD?

• Check that if we expect the 3rd message in sequence, what we
just received actually is the 3rd message.

• Check a message id, to reorder fragmented, unordered messages
(e.g. UDP datagrams).

• Check that a message is not older than a given timestamp.

• Check a protocol version.

Encryption
Why do applications need explicit nonces/AD?

• Check that a value attached to a message is the one we expect

• Check that a value attached to a message is the one we expect

• Check that a value attached to a message is the one we expect

• Check that a value attached to a message is the one we expect

From an API perspective: no AD, no nonce, but a 64 bit integer

Encryption
hydro_secretbox_keygen(key);

hydro_secretbox_encrypt(ciphertext,  
 MESSAGE, MESSAGE_LEN, 1,  
 CONTEXT, key);

hydro_secretbox_decrypt(decrypted,  
 ciphertext, CIPHERTEXT_LEN, 1,  
 CONTEXT, key)

Be consistent
HKDF parameters: 

hash function, salt, key information.

Salt -> context 
Key information -> 64 bit value

One vocabulary, same types used across all the APIs. 

Even if the underlying primitives are more flexible, simplify
their interface to what most real-world projects actually need.

Key exchange

Protocol independent

Transport independent

Can be extended

Hard to get wrong

Key exchange
Bob:

hydro_kx_xx1() -> packet1

Alice:

hydro_kx_xx2(packet1) -> packet2

Bob:

hydro_kx_xx3(packet2) -> packet3

(Optional) Alice:

hydro_kx_xx4(packet3) -> DONE!

Don’t reinvent the wheel

Noise

Noisesocket

Strobe

+ well-studied constructions

Improving security 
through better abstractions

From:

Many raw crypto primitives and combinators + high level
APIs implementing specific protocols

To:

A translation of what primitives can do into what typical
applications need. High-level building blocks with a simple,

unified interface modeled after real-world use cases.

Requirements: no limitations, MR, domain separation.

Thanks!
Frank Denis

@jedisct1
frank@primulinus.com

https://libsodium.org
https://github.com/jedisct1/libhydrogen

https://libsodium.org
https://github.com/jedisct1/libhydrogen

