
Hypervisor-Level
Debugger
Benefits & Challenges

Mathieu Tarral

Whoami

● Researcher at
● Stealth sandboxing
● Virtual Machine Introspection

@mtarral

https://github.com/KVM-VMI/kvm-vmi

Why ?

Problem 1: Debuggers are noisy

● A debugger modifies the execution environment of a debuggee

Problem 2: Protected OS features

● The observer effect might sometimes be intentional
● bcdedit /debug on

○ disables Patchguard

○ disables Protected Media Path

■ Used to enforce DRM

Problem 3: Incomplete system view

● Debuggers fighting against new OS security features

Solution: Moving to ring -1

● Leverage the hypervisor as a debugging platform

● Stealth
○ do not use the operating system’s debug API

○ bonus: invisible breakpoints with EPT violations

● Full system analysis
○ VMM’s property: Resource control / Safety

○ access to the entire guest state

○ bonus: debug bootloaders

Benefit: Unmodified guests

● No remote debug agent/stub
● No custom VM setup

○ hardware

■ network card

■ serial cable

○ software

■ install Windows SDK

○ configuration

■ bcdedit /set debug on

■ bcdedit /dbgsettings serial debugport:1 baudrate:115200

● On-the-fly debugging

Benefit: Cross-platform debugger

● Build your knowledge/scripts on top of one tool

Projects ?

Bare-metal debuggers

● HyperDBG (2010)
○ “I want to take full control of a production system”
○ Hyperjacking: driver is installed on the host

● virtdbg (2011)
○ “I want to debug PatchGuard”
○ Hyperjacking: driver is injected via DMA attack

● PulseDBG (2017)
○ “I want a better WinDBG UI”
○ Hypervisor is contained in an EFI bootloader (bootx64.efi)

Virtual machine debuggers

● Built-in debug stubs
○ QEMU (2003)

○ VMware Workstation 6.0 (2007)

● PyREBox - CISCO Talos (2017)
○ “I want a scriptable dynamic instrumentation system”

○ Instrumentation of QEMU (emulator)

● rVMI - FireEye (2017)
○ “I want to understand why a malware sample didn’t run”

○ Instrumentation of KVM

○ Rekall as introspection layer / debugger interface

How ?

Design: improve rVMI

 Rekall
 Debugger QEMU/KVM

 Debugger
 /
 Reverse-engineering

Introspection
Layer Hypervisor

VMI
abstraction

Hypervisor

Hypervisor-agnostic: LibVMI

VCPU Registers Physical memory Hardware events

Xen ✅ ✅ ✅

KVM ✅ ✅ ❌

● VMI Abstraction layer
● Offers basic introspection
● Standard for VMI applications
● Future support ?

○ VMware, VirtualBox ?

https://github.com/libvmi/libvmi

Architecture

● IO plugin (io_vmi.c)
○ initialize LibVMI, access memory and registers

● Debug plugin (debug_vmi.c)
○ attach process

○ singlestep

○ breakpoints

● r2 -d vmi://vm_name:name|pid

radare2
r2vmi plugins
(IO & Debug)

LibVMI Xen
VM

Hardware state

Status ?

Features

● Intercept an existing process by name/pid (CR3 load)
● Single-step process execution
● Set software/memory breakpoints
● Load kernel symbols into r2 flagspace (from Rekall profile)
● radare2 interface

○ powerful shell

○ graph view

○ structures

○ scripting

Demo

Interactive debugger

https://docs.google.com/file/d/1R63TdJiP3TjN4t-4FFiPjSFajqfXgZ0C/preview

Scripting: Intercepting syscalls

Scripting: Intercepting syscalls

https://docs.google.com/file/d/1OcDt0xPKhyXVVMZwhk1zrYMrtcG7Y8bW/preview

Future ?

Challenges

● Attach existing process
○ CR3 -> locate threads context, find RIP

● Break on addresses not mapped yet
○ pagefault injection

● Introspection
○ drop rekall profile

○ rabin2 to parse PE in memory

○ radare2 to download/load PDB symbols

● Attach new process
○ guest frozen, Xen development

https://github.com/Wenzel/vagrant-xen-r2vmi

Goals

https://github.com/Wenzel/r2vmi

● Malware analysis
○ stealth sandbox

○ highly interactive reverse-engineering framework

● Fuzzing
● Windows 10 VSM debugging

○ support of Hyper-V on Xen/KVM (?)

● Multi-purpose, cross-platform, full system debugger
○ hypervisor-agnostic by design

Thanks

● pancake (radare2)
● Maxime Morin (radare2)
● Tamas K lengyel (LibVMI)
● Michael Cohen (Rekall)
● Alexey Konovalov (Windows Internals)
● Lorenzo Martignoni & Aristide Fattori (HyperDBG)
● Damien Aumaître (virtdbg)
● Artem Shishkin (PulseDBG)
● Thais Moreira Hamasaki

Questions

Annex

HyperDBG - 2010

● “I want to debug production systems”
● Hyperjacking
● Press F12 to invoke the debugger UI
● Pros

○ “unmodified guest”: install a driver

○ on-the-fly debugging

● Cons
○ OS support ?

○ user interface

○ unmaintained

VirtDBG - 2011

● “I want to debug PatchGuard”
● Hyperjacking

○ hypervisor is silently injected via DMA attack !

● Pros:
○ “unmodified guest”: inject a driver

○ on-the-fly debugging

○ GDB protocol

● Cons
○ hardware requirements

○ unmaintained

● “I want a better WinDBG UI”
● Hypervisor is contained in an EFI bootloader (bootx64.efi)

○ USB stick or network boot via PXE

● Pros:
○ “unmodified guest”: boot sequence

○ BIOS and bootloader debugging

○ “can” work on top of another hypervisor (VMware)

○ OS-agnostic (hypervisor in EFI module)

● Cons:
○ custom client/server protocol

○ closed source

PulseDbg - 2017

● Since VMware Workstation 6.0+
● edit .vmx file

○ debugStub.listen.guest64 = "TRUE"

● Pros
○ unmodified guest
○ can debug bootloaders

■ monitor.debugOnStartGuest64 = "TRUE"

● Cons
○ VMWare-only

○ need a licence

○ not open-source

VMware Workstation GDB stub - 2007

● “I want a scriptable sandbox environment”
● Full instrumentation of QEMU (emulator)
● Pros:

● fine grained control (instruction-level callbacks)
● IPython shell, scripts

● Cons:
● Emulation
● QEMU-only

PyREBox (CISCO Talos) - 2017

● “I want to understand why a malware sample didn’t run”
● VMI instrumentation of KVM
● Pros:

○ introspection layer, thanks to Rekall

○ support for snapshots

● Cons:
○ QEMU/KVM only

○ pushing a debugger into a forensic tool (?)

○ lots of custom code modifications

■ upstream integration (?)

rVMI (FireEye) - 2017

