

Log Hunting with Sigma
A hands-on introduction to Sigma rules and the conversion tool

Thomas Patzke, 17. October 2018

Prerequisites

Requirements:
 Python 3.5 or 3.6

https://www.python.org/downloads/release/python-365/
 Docker CE (current version)
 Clone of the Sigma workshop repository: https://github.com/thomaspatzke/sigma-

workshop
git clone --recursive \
https://github.com/thomaspatzke/sigma-workshop.git

 Sigma dependencies:
pip3 install -r sigma/tools/requirements.txt
or apt-get install python3-yaml

 Elasticsearch and Kibana with log data:
– docker load -i sigma-workshop-docker.tar

– docker-compose -f es_kibana.docker-compose.yml up

– ./sigma_workshop_prepare_es.sh

Overview

 A short (!) introduction to Sigma
 Writing a log Signature for:

– Execution of a Mimikatz release binary (process execution by hash)
– Common parameter usage of NirSoft’s NetPass tool (process

execution by command line)
– WCE LSASS injection behaviour

 Building a Sigma Converter configuration
 Convert to Elasticsearch query and search ELK instance
 Generic log sources

Sigma Introduction

 Generic signature format for description of log events
– YAML-based
– Indicators: Key-Value, Key-List and Value-only
– Conditions and aggregations
– Meta-data: Title, description, authors, tags (ATT&CK),

severity, ...

 Conversion tool sigmac
 Workflow:
Interesting Log

Event
Sigma Rule Query

Build
(Editor/Tools)

Convert
(sigmac)

Sigma Rule – Example 1

Rule metadata
(purely descriptive)

Log source definition
Scope generated query
by
● restriction to indices
● addition of conditions

Values to search in specific fields of log data,
grouped in selections

Selections are linked in a condition

Fields that are particularly interesting and
should be displayed in search results

Severity of matches, may be used for filtering rules

Sigma Rule – Example 2

Tagging of rules with ATT&CK tactics, techniques
and software tags. Can be used for filtering of rules.

Usual condition: search for selection and filter
uninteresting events.

Advantages

 Reduced vendor lock-in
 Distribution of log signatures in heterogeneous environments or in

blog posts/threat intel products
 Build one rule and use it in your SIEM, alerting, endpoint security

solution or even for grepping in log files and querying from PowerShell
 220+ Sigma rules in GitHub repository
 Evolving tool/services support: MISP conversion extension, online

editor, …
 Intermediate language for generation of queries from IOCs in other

formats
 Increasing community contribution

Sigma Goals and Scope

 Being human-writable and readable
– No XML or JSON, no deeply nested structures

 Machine-readable and writable
– YAML, no ambiguities

 Simpleness
– Expressiveness for 95% of log signatures
– NOT: description of every imaginable SIEM use case or threat hunting

technique
– It should be relatively easy to build an own Sigma parser

 Tooling: it should be practicably usable, not just theory

Enough Theory!

Let’s get our hands dirty!

Exercise 1
Mimikatz Release Binary
 Let’s assume we’re targeted by an attacker who is known to use

the Mimikatz 2.1.1 release
 SHA256 hashes (see challenges/1-Mimikatz_2.1.1_Hashes.txt):

– 97f93fe103c5a3618b505e82a1ce2e0e90a481aae102e52814742badd
d9fed41 ./Win32/mimilove.exe

– 6bfc1ec16f3bd497613f57a278188ff7529e94eb48dcabf81587f7c275
b3e86d ./Win32/mimikatz.exe

– e46ba4bdd4168a399ee5bc2161a8c918095fa30eb20ac88cac6ab1d6
dbea2b4a ./x64/mimikatz.exe

 Write a rule for Sysmon events that detects execution of the
above binaries (EventID 1) by utilization of the Hashes field

Exercise 1
Possible Solution

Rule Conversion with Sigma Converter

 The Sigma Converter (sigmac) is located in tools/sigmac in the Sigma repository
 Run it with --help to get an overview
 Convert into target query language (-t) es-qs

(Elasticsearch Query String)
 No matches! Why?

– Sigma rules are (or should be) generic, so some further work is required
– Mapping of field names:

● EventID event_id→ event_id
● Hashes event_data.Hashes→ event_id

– EventID 1 may also appear from other sources, search needs to be restricted to log
source by addition of further conditions

 Sigma conversion configuration defines the transformation

Sigma Converter Configuration

This section describes log sources and is matched
against the logsource definition from the Sigma rule

Matches to all rules where product is windows

All Windows logs are in indices matching the
Pattern winlogbeat-*

All queries of Windows Sysmon logs should be
restricted to events where the field log_name is set
to Microsoft-Windows-Sysmon/Operational

Fallback index if no logsource matches

Mapping from fieldnames
in Sigma rule to these in
target system.

Multiple matching log source
definitions are accumulated

Try Again – with Configuration!

 Try to write your own configuration
 Configurations can be passed to Sigma converter

with parameter -c

Further Exercises

 Exercise 2: NirSoft NetPass

– NetPass has some very characteristic parameter names: /stext, /stab,
/scomma, /stabular, /shtml, /sverhtml, /sxml

– Write a rule for Sysmon process creation events and utilize the
CommandLine field for identification of parameter usage, don’t:

● Try to match hashes of any releases
● Match the file name

 Exercise 3: WCE LSASS Injection

– WCE causes a burst of Sysmon CreateRemoteThread (EventID 8) events
into lsass.exe (TargetImage)

– Further, some security products also inject into LSASS, but only WCE does
without a StartModule. Filter these out.

Exercise 2
Possible Solution

Exercise 3
Possible Solution

Handling many Sigma Rules

 Copy and pasting rules between terminal and browser
is not very convenient.

 Build a Kibana import file from all previous solutions
with the kibana backend

 Import the generated file into Kibana

Generic Log Sources: Introduction

 There are different EventIDs for the same events
– Process execution: Sysmon/1 and Security/4688

 Products that recognize such events, but don’t know about these
EventIDs
– Windows Defender ATP and various other EDR products

 Causes
– Redundancy: multiple rules for the same event
– Inconsistency: one rule for a event id that may be recognized by another
– Complex conversion (matching all EventIDs to target query language

objects)

Generic Log Sources: Example

Generic Log Sources: State & Usage

 Current state: open for testing
– Many rules have to be converted
– Project branch: project-1

(https://github.com/Neo23x0/sigma/tree/project-1)

 Usage: chained configurations
1. Generic rule specific➔ specific

Process creation Sysmon/1➔ specific

2. Specific rule Environment-specific rule➔ specific
Sysmon/1 Sysmon/1 with field mappings and additional conditions➔ specific

 Configuration for process creation to Sysmon already exists
 Let’s try it!

– Sigma Converter with generic log source support in directory
sigma_with_generic_logsources/

Questions?

 E-Mail: thomas@patzke.org
 Twitter: @blubbfiction

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22

