THE (NOT SO PROFITABLE) PATH
TOWARDS AUTOMATED HEEAP
=APLOITATION

Thais Moreira Hamasaki

¥ barbiefuglend
2018-18-16 | HackLu 2818 | Luxembourg, LU

DISCLAIMI

R

This research was accomplished by
me in my personal capacity during
my spare time.

DON'T BEE TOO JUDGEMIEENTAL PLEASE! :)

full disclosure: I am NOT a vulnerability
researcher?

ABOUT Mz

echo

echo
echo
echo
echo
echo
echo

echo

'Stare at binaries during the day'

'Blackhoodie - Core Organizer and Board Member'

'"HackLu s program s committee'
'Disobey s Lead of Technical Content'’

'x86 Assembly & RE101 - Lead of both groups @chaosdorf’

'Logical Programming, RE, static analysis,
'Wwannabe "Karaoke" singer'

'Stare at binaries by night'

Mountaineering FTW'

BlackHeodie

WHAT AM | GOING TO TALK
ABOUT?

e constraint logic programming (CLP)
e solvers

o static analysis scalability

e the memory

« oh yeah, heaps...

S.AT.. WHAT!?

e Solvert
- Satisfiability Modulo Theories (SHT)

CONSTRAINTS

“Constraint programming represents
one of the closest approaches
computer science has yet made to
the Holy Erail of programming: the
user states the problem, the
computer solves it." Eugene [.
Freuder, Constraints, April 1997

AUTOMATED THIEOREM PROVING

SAT
¢ | st
Formula Solver UNSAT

e Hardware and Software — Large-scale
verification

 Languages specification and Computing proof
obligations

STMBOLIC AzCUTION

Fd
L[]

input();
x + 7;

w
]

if (x > 0)
y = input();
else

y = 11;

if (x> 2)

if (y == 42)

throw
Exception ()

LOOKS LIK

= TiIAT

x = input()
J X —a
X=xXx+7
l xX—a+7
if (x > 0)
“‘V N?:
y =input() —
Jrr_,1;,| I y— 11
if (x>2) if (x> 2)
ﬂf.r.':‘/ \‘!4-."._' 1'-|+.r:>/ \
if (y== if (v == 42)
b= V \n-u 1==2—‘V \11*—42
ERROR ERROR

Figure 8: Example of symbolic execution for simple program

(¥]

HOW IT WORKS

 Create a process (pc = 8, state = [])
« Aidd the process (pc, state) to the domain system
)
e while D not empty:
= Remove process {pc, state) from system
« Execute it until the next branching point
o If both paths are feasible, add both to D
o 1f just one is feasible, add the feasible
path and the negation of the not feasible
path to D

THE LOGIC GATES OF THiE

MzMORY

50 SHADES OF MaEMORY

the IMPLEMENTATION

_________ + HEAP

APPLICATIONS

MALWARz ANALYSIS

&

e Obfuscation
« Compiler optimizations
e Crypto-analysis

BUG HUNTING

&

 Fuzzing
e Code verification
e Binary Analysis

=APLOITATION

« PoC (Proof of Concept)
e AEG (Automated Exploit Generation)
« APE (Automated Payload Generation)

WHAT Wiz ARz LOOKING FOR

e Uulnerable

WHAT Wiz ARz LOOKING FOR

e Uulnerable AND Exploitable

HOW 10 CRASH !

AUTOMATION OUT THERE

« Exploratory testing
 Dynamic taint analysis
e Abstract interpretation

AUTOMATION OUT THIERE

 Klee
= Open source symbolic executor
= Runs on top of LLUH
 Manticore
= Symbolic execution
« Taint analysis
= Binary instrumentation

TOOL OF CHOICE

~

S/MBOLIC

FORWARD

EAZCUTION

=APLOIT GENERATION

Find a bug — easy right?

Def: Uulnerable Path for input € is
N_(vulnerability)(e)

PLAN

Theorem: Given a program,
automatically find vulnerabilities
and generate exploits for thenm.

PLAN

Theorem: Given a program,
automatically find vulnerabilities
and generate exploits for thenm.

e direct influence

PLAN

Theorem: Given a program,
automatically find vulnerabilities
and generate exploits for thenm.

e indirect influence

malloc(strlen(user_input));

=APLOIT GENERATION

Check if it is exploitable

Not that easy anymore...
N{vulnerability){e) A M{exploit){e) = true
Where N_(exploit){e) is the attacker's logic

=APLOIT

=RATION

Implement N_(exploit)(e)

for a really special case N{vulnerability)({e) A
M{exploit)(e)

and then it works HMOST of the times
is it really automated then?

=APLOIT GENERATION

EXTRA: Evaluate

« Find the HEAP

« Exploit Uerification

o State Space Explosion
« Environment Definition

LIMITATIONS

EORETICAL #1

R ice's Theorem

Theorem
Let L be a subset of Strings represeating

Turing machings, where
. TF M, and My recognize +he same language,
then either <M,> <MY EL or <M>, <MOEL.

2.3 M, M, s.t <M,2elL and <MY &L,
Then L is undecidable.

THEORETICAL #2

Non-Turing acceptable languages

Undecidable languages

Decidable
languages

PRACTICAL

Remember...

CONCLUSION

LEARNINGS /7 TAKEE AWAY

TODAY I LEARNED
m‘;’ .

RANDOM TRIVIA'VOID OF
" EDUCATIONALVALUE

e Symbolic execution is a powerful tool while
afalysing—malware for vulnerability research

« SMT solvers can reason and generate exploits

LEARNINGS /7 TAKEE AWAY

TODAY I LEARNED
m‘;’ .

RANDOM TRIVIA'VOID OF
" EDUCATIONALVALUE

e Symbolic execution can be is a powerful tool for
vulnerability research
« SMT solvers can reason and generate exploits

e &
i -
>

: :,:i‘_-_-; .
AN L U — d
S IT{WORKSTT!" |

\I'l."l. L' T8

« a3 binary garbage-code eliminator, a XOR search,
some "‘cryptographic" algorithm breaker, a
generic unpacker, a binary structure recognizer,
a C++ class hierarchy reconstructor.

WORKING ON ..

¢ QUESTS

) 4
r b
QUESTS EVERYWHERE

 specialized constraint inference assistant for
computer security problems

ACKNOWLEDGiA

« ¥ Sean Heelan
» Automated Heap Layout Manipulation for
Exploitation (Heelan et al. to appear in
Usenix Security 2i18)
» and his time;
« and inspirationt
« ¥ HMarion Marschalek
« Heap Models for Exploit Systems (Vanegue,
Langsec 2815)
« and the Intel Documentation I think ... 7

ENTS

QUIESTIONS?

o
Dankie Graclas
A (e
Cnacubo Merci";‘fakk

Kﬂazﬁnjﬁk . Terima kasih

Grazie Dzigkujemy Dékojame
akujeme Vielen Dank Paldies
" Kiitos g Taname teid B
Tak

s Dhrigado I‘E:ﬁqé Dm;a
2ag eUXAPIOTOUNE gy oy o
Bedank! Dikujeme vim
EORESTENET

Tack

¥ @barbiefAuglend

% barbie@barbieauglend.re

