
Keynote speech:
Fileless Malware and Process

Injection in Linux
(Linux post-exploitation from
a blue-teamer’s point of view)

2019.hack.lu
Hendrick, Adrian - @unixfreaxjp

Cyber Emergency Center, LACERT / LAC

Linux security research of malwaremustdie.org

Introduction

1. Just another security folk in day by day basis
- Malware incident senior analyst at Forensics Group in Cyber

Emergency Center of LAC in Tokyo, Japan. (lac.co.jp)
- LACERT team member for global IR coordination.
- Founder of MalwareMustDie.org (MMD), est:2012, legit NPO.

2. My community give-back:
- Linux threat / malware awareness sharing in MMD media.
- Lecturer/support for national education events: IPA’s Security Camp,

IPA’s ICSCoE CISO training, DFIR & RE related workshops,
- Supporting open source security tools with UNIX orientation like:

radare2, Tsurugi DFIR Linux & MISP (IoC posts & ICS taxonomy
design), and in VirusTotal community for the ELF malware support.

3. Other activities:
- FIRST.ORG activist as curator & contributor, PC, Hackathon, etc 2

About me in a simple image

3

..my everyday activity is like this..

4

me

Bad
Code
Zone

My weekly sport / hobby (for 30 years now).

5

I found that security
and my sport is
parallel and a nice
metaphor to each
other,

..so I will present this
talk with sharing
several wisdoms I
learned in my practise.

Contents

6

1. Background
2. Post exploitation in Linux

○ Concept, Supporting tools
3. Process injection in Linux

○ Concept, Supporting tools
○ Fileless method,

4. Frameworks components to make all of these possible
○ Frameworks: concept, specifics, examples
○ Components: Shellcodes, Privilege Escalating & Payloads

5. A concept in defending our boxes
○ Forensics perspective
○ IR and resource management model

6. Appendix

Chapter one - The Background

7(behind these pics)

Why Linux - why post exploitation

1. Linux, now, is one of most influence OS that is so close to our lifeline.

2. Linux is everywhere, in the clouds, houses, offices, in vehicles. In the
ground, in the air in in outer space. Linux is free and is an open source,
and that is good. This is just its a flip side of this OS popularity..

3. Linux executable scheme are so varied in supporting many execution
scenarios & when something bad happens the executable’s detection
ratio is not as good as Windows.

4. Linux operated device can act as many adversaries scenario: payload
deliverable hosts, spy proxy, attack cushions, backdoor, attack C2, etc..

5. Post exploitation frameworks is supporting Linux platform too. 8

Why Linux - why we should support linux more

1. Linux security is great in design but in some implementation is still poor:

○ Linux malware still has low detection compared to Windows or Mac

○ Linux older OS basis devices are still actively sold in the market as
devices, appliance or IOT

○ Limitation in Reverse engineering on Linux that must support varied
CPU architectures

2. We tried to make several examples, but still need more effort

○ More user friendliest in analysis and RE of Linux malware

○ Supporting Linux analysis tools, to make sure they are not outdated:
Lynis, radare2, DFIR tool (i.e. Tsurugi)

○ Security awareness 9

Balance between: Achievements, Sharing, Education and Regeneration 10

Linux research - a cycle to raise Linux awareness

11

Linux threat research PoC - Analysis records

12

Linux threat research PoC - What we've done..

URL: https://www.youtube.com/watch?v=xDvwXBJPxgQ
13

Linux threat research PoC - RE tips (howto)

http://www.youtube.com/watch?v=xDvwXBJPxgQ

Point: Gaining balance between: Achievements, Sharing, Education and
Regeneration 14

Linux threat research PoC - Other accomplishments

What this talk
is all about?

15

Fileless Malware and Process
Injection in Linux

1. Background
2. Post exploitation in Linux

○ Concept, Supporting tools
3. Process injection in Linux

○ Concept, Supporting tools
○ Fileless method,

4. Components to make all of these
possible
○ Frameworks: concept, specifics,

examples
○ Components: Shellcodes,

Privilege Escalating & Payloads
5. A concept in defending our boxes

○ Forensics perspective
○ IR and resource management

model
6. Appendix

What this talk is all about..

1. I wrote this as a blue-teamer, in handling advanced trend in Linux
intrusion as incidents analyst to build base in handling the subject (still
too view guideline as blue-teamer or DFIR), NOT as pentester.

2. This talk is about Linux security on receiving intrusion to run
malicious code in the compromised system, with highlighting
the Fileless, Injection process and the Framework supporting
the process, from blue-teamer point of view, for the defense
and protection purpose.

3. It is based in Linux research we have done in MalwareMustDie, mostly
unpublished (security purpose), shared as TLP AMBER. Noted: I don’t
use my work data from office/other places in any of these slides.

16

17

First, knowing your potential..

What is our strength as Blue Teamer?

And optimize them!

Remember, "We all have common enemies!"

Okay! Good to know!
Where to start?

“..Start from the skillset that
you’re good at.”

18

Chapter two- Post exploitation in Linux

19

“Never ever open your weakness..”

About post exploitation and its Linux relation

Pentesting or red teaming, in a controlled environment, is an activity
involving a usage of various tools and techniques to assess an audited
system(s), by measuring its vulnerability scales, it is a security knowhow
that is developed, shared, and it is supporting Linux OS.

Its activities as of: vulnerability exploitation, gaining executable access,
information collecting process and (persistence in) owning the box
methods, are well / richly written in various online documentation.

Post exploitation framework was built to support those activity in an
infrastructure to make assessment the whole process to be more efficient.
..while adversaries are trying to take that benefit by adapting pentester
methods and toolkits.

20

21

1. Linux is very rich of scripting tools:
- Shells & basic function scripts: bash, python, perl
- Other CGI related: PHP, etc
- Development related: Ruby, Lua Go, C?

2. Research said that 60%+ of Linux boxes are online w/vital roles:
- Gateways
- NAS
- Database and other services

3. Vulnerability management in online Linux based services is hard:
- Cloud and hosting Linux services are having slower update -
 pace than dedicated services..
- Online IOTs and appliances are slower or outdated in updates

4. These all can be scanned online.

Why post exploit is very applicable in Linux

Where we are on post exploit framework in Linux

1. Post exploitation frameworks, were started from exploitation R&D, has
been started to be used as attack platforms too.
(adversaries tend to learn & use “read-teamer” toolkits).

2. Post exploitation has becoming a popular method in recent threats
(public, cyber crime & targeted ones). It was started from WIndows
intrusion, then aiming other OS (as “additional-option” in the beginning).
This brings Windows pwn concept to UNIX-like landscape & in some
cases it is replacing common binary intrusion basis.

3. Linux focused post-exploitation framework(s) are developed well too.
This made adversaries just need “to script” instead of “to code” exploit
scheme, where fileless method & new Linux file systems forensics
scheme are still a big obstacle for incident response.

4. Components needed as framework, i.e.: Privilege escalation, process or
thread injection, fileless execution and payloads are actively developed22

Let's take a look deeper on post-exploitation

23

OSINT is on!

Legacy
Post
Exploitation..

24

Fileless Malware and Process
Injection in Linux

1. Background
2. Post exploitation in Linux

○ Concept, Supporting tools
3. Process injection in Linux

○ Concept, Supporting tools
○ Fileless method,

4. Components to make all of these
possible
○ Frameworks: concept, specifics,

examples
○ Components: Shellcodes,

Privilege Escalating & Payloads
5. A concept in defending our boxes

○ Forensics perspective
○ IR and resource management

model
6. Appendix

Legacy Post exploitation

25

Blind Files

These are the first information that are mostly grab-able by adversaries after entering the
system

26

Distribution checks

Legacy Post exploitation

27

No history

Legacy Post exploitation

28

System Information

Legacy Post exploitation

29

Installed package list

Legacy Post exploitation

30

Networking

Legacy Post exploitation

31

Configuration files

Legacy Post exploitation

32

Accounts

Legacy Post exploitation

33

Credentials

Legacy Post exploitation

34

Seeking important files

Legacy Post exploitation

35

Reverse shelling

Legacy Post exploitation

36

suid 0

Legacy Post exploitation

37

Covering tracks

Legacy Post exploitation

Automation,
Framework,
and...

38

Fileless Malware and Process
Injection in Linux

1. Background
2. Post exploitation in Linux

○ Concept, Supporting tools
3. Process injection in Linux

○ Concept, Supporting tools
○ Fileless method,

4. Components to make all of these
possible
○ Frameworks: concept, specifics,

examples
○ Components: Shellcodes,

Privilege Escalating & Payloads
5. A concept in defending our boxes

○ Forensics perspective
○ IR and resource management

model
6. Appendix

Automation, Framework

39

Well, of course, why not script them all..

Automation, Framework

40

These frameworks support Linux pwnage..(meterpreter)

> checkvm
> enum_configs
> enum_network
> enum_protections
> enum_system
> enum_users_history

Automation, Framework

41

These frameworks support Linux pwnage..(cobalt strike)

Automation, Framework

42

The raise of Open Source post exploit frameworks & tools for Linux

Automation, Framework

43

The growth
of cheatsheets..

44

Fileless Malware and Process
Injection in Linux

1. Background
2. Post exploitation in Linux

○ Concept, Supporting tools
3. Process injection in Linux

○ Concept, Supporting tools
○ Fileless method,

4. Components to make all of these
possible
○ Frameworks: concept, specifics,

examples
○ Components: Shellcodes,

Privilege Escalating & Payloads
5. A concept in defending our boxes

○ Forensics perspective
○ IR and resource management

model
6. Appendix

Post exploitation - Cheatsheets

45

Pentest Monkey

46

Awesome Pentesting

Post exploitation - Cheatsheets

47

Red Teaming Experiments

Post exploitation - Cheatsheets

48

The Offensive Security

Post exploitation - Cheatsheets

Post exploitation - Cheatsheets

49

Advanced Threat Tactics

The
Infrastucture..

50

Fileless Malware and Process
Injection in Linux

1. Background
2. Post exploitation in Linux

○ Concept, Supporting tools
3. Process injection in Linux

○ Concept, Supporting tools
○ Fileless method,

4. Components to make all of these
possible
○ Frameworks: concept, specifics,

examples
○ Components: Shellcodes,

Privilege Escalating & Payloads
5. A concept in defending our boxes

○ Forensics perspective
○ IR and resource management

model
6. Appendix

Post Exploitation Infrastructure

51

Why so direct? A lot of JUMPER, PROXY, TCP FORWARDER ways..

Post Exploitation Infrastructure

52

Why so direct? A lot of JUMPER, PROXY, FORWARDER ways..

Post Exploitation Infrastructure

53

Linux cushions are giving attacker advantages on having cushion attack
layers.. maybe you will think their framework looks like something like this
kind of pentester-lab design??

Post Exploitation Infrastructure

54

This is what actually infrastructure
looks like in real incidents

Post Exploit Automation, Framework, Infrastructure

55

Hello Rick!

 ”Where are we now?”

Automation, Framework, Infrastructure

56

Rick:

Chapter three - Process injection in Linux

57

“What happen if your guard is down...”

Remember:

“Do stuff that you’re good at.”

58

59

In my case, is this one :)

Process Injection

60

1. The definition
- A method of executing arbitrary code in the address space of

 a separate process. Running code in another process, may
 allow access to the process's memory/system/network
 resources, and possibly elevated privileges. MITRE ATT&CK™

- Targets: thread, process , user memory space, kernel space....
2. The purpose

- To run malicious program (Malicious intent possibility)
- To not leaving traces in disk (Anti-forensics, fileless)
- To be evasive and undetected (Protect evasion scheme)

3. In practical
- Used in many Exploitation & Post-Exploitation Framework
- Many Vuln Open Source dev are using process injections

4. In Linux? How? Is it really happens?

Concepts I follow in Linux Process Injection

61

1. Code injection at EIP/RIP address
mostly using ptrace (or gdb or dbx etc) to control the process flow and
to then to enumerate address to inject after state of injection is gained.

2. Shared library execution to inject code to memory
uses LD_PRELOAD or dynamic loader functions to load share object

3. Code injection to address main() function of the process.
bad point is, not every process started from main, some has preliminary
execution too.

4. Using one of the ELF execution process (ELF Injection) techniques.
ELF can be executed in many ways, it is "not memory injection", but
can be forced to load something to memory, we don't discuss it now.

5. Inject the code into the stack
i.e. buffer overflow, it's possible only if the stack area is executable.

6. Combination of above concepts and/or unknown new methods

ptrace() basis process injection (1)

62

Ptrace’s PTRACE_TRACEME() base injection model (tweaked codes)

ptrace() basis process injection (2)

63

Ptrace’s PTRACE_SETOPTIONS() base injection (tweaked codes)

ptrace() basis process injection (3)

64

Ptrace breakpoint base injection1 (interception of RIP)

ptrace() basis process injection (4)

65

Ptrace breakpoint base injection2 (set register point to RIP)

Real incidents
to practise your
IR for injection

66

Fileless Malware and Process
Injection in Linux

1. Background
2. Post exploitation in Linux

○ Concept, Supporting tools
3. Process injection in Linux

○ Concept, Supporting tools
○ Fileless method

4. Components to make all of these
possible
○ Frameworks: concept, specifics,

examples
○ Components: Shellcodes,

Privilege Escalating & Payloads
5. A concept in defending our boxes

○ Forensics perspective
○ IR and resource management

model
6. Appendix

Incident #1 happens, getting into victim machine

67

What is WRONG in this picture? No artifacts, just a running memory..

Incident #1 happens, getting into victim machine

68

The “date” process listening to TCP/4444.. This is never good.

69

You got a fileless?? injection!

Incident #1 happens, getting into victim machine

70

The “date” PID 3245 in base address 0x400000, read header & dump it

Incident #1 happens, getting into victim machine

71

Open w/ your binary analysis tool and the entry0 should looks like this:

Check the “file” dumped it is a dynamic ELF file, either stripped or
unstripped, in this case it is not stripped.

Incident #1 happens, getting into victim machine

72

If you do it on live-memory, I don’t recommend that, Anti debug in binary
MAY mess the analysis. Below is the "date”, a decoy used for injection

It's practically making
loops, not much action..

Incident #1 happens, getting into victim machine

73

But wait! In “date” workspace there is a shellcode running, grab that too..

Incident #1 happens, getting into victim machine

74

Eager to find how the shellcode gets into the memory, I seek all of the
hard disk for the deleted files. Lucky, I found both files I looked for..

Incident #1 happens, getting into victim machine

75

I analyzed from it, two blobs are loaded, could be shellcode injectors

Incident #1 happens, getting into victim machine

76

After taking a while in reversing, the “injecting” code looks like this in C,
the ptrace is used to gain the state memory injection.

Incident #1 happens, getting into victim machine

77

There are “stub” and “shellcode”, if both merged, will have same hash as
njected shellcode. The “stub part is reversed to be a beginning of a program
which will call the sys_exit() if ERR, OR it will sys_fork() if all okay.

Incident #1 happens, getting into victim machine

78

The “shellcode” blob looks like this at the beginning, sys_socket, sys_bind,
sys_listen & sys_accept calls are used, pointing to TCP/4444 hardcoded.

Incident #1 happens, getting into victim machine

79

After receiving data, it will be executed via /bin/sh by parsing (stdout) and
all of these is happening in memory, a fileless scheme execution mode.

Incident #1 happens, getting into victim machine

80

Reversed shellcode further, turned out to be a commonly used bind shell

What do we learn from this case #1?

81

1. Reverse engineering is a must
Without analyzing the code, we will not understand the actual

situation for the further IR handling. You can see that the “date” was
forked because of shellcode, and it will stop binding if /bin/sh is
executed, at least the program will not listening into TCP/4444
anymore, yet it still does when sysadmin found out. WHY?

2. Linux on-memory analysis
In each memory injection case, you can do an on-memory "hot"

analysis for injected process like this. the concept is doable, and
works for memory injection, thread injection, unpacking memory
injection,and so on. Works in ICS, Servers, Clouds VM, etc Linux.

3. The legendary injection scheme
For injection method. This is only injection case using ptrace

method AND there more savvy methods to come in the next slides.

What do we learn from this case #1?

82

OSINT is on!

83

OSINT shows later in it is a process injection wrapper made by C

What do we learn from this case #1?

84

It uses ptrace to enumerate memory for injection, see the pattern below.
When ptrace_cont was executed the shellcode is executed.

Let’s reproduce, a re-gen for memory forensics

Incident #2 happens, getting into victim machine

85

What is WRONG in this picture? No artifacts, just a running memory..

Incident #2 happens, getting into victim machine

86

87

You got a fileless injection!

In this incident the bogus processes in the memory appears and having a
well implanted of library inside.

88

Incident #2 happens, getting into victim machine

This is the bogus bash.sh which
ELF and doing only looping too….

Use the memory map again to seek the injected library is located..
And you’ll find the bogus injected library ELF file (.so)

89

Incident #2 happens, getting into victim machine

The next is to dump and analyze this malicious shared object ELF..

See the memory map again to seek the injected library is located..
And you’ll find the bogus injected library ELF file (.so)

90

Incident #2 happens, getting into victim machine

To find that it is piping socket to execute the “/bin/sh” from incoming data

What do we learn from this case #2 now?

91

1. Not only static or dynamic/static ELF binaries but modules files (.so) are
also applicable to be injected to the memory of a process

2. Hot forensics for the hacked Linux systems will do just great, but
remember that you MUST also do the Cold Forensics too (it is a must!).
In many cases we don’t know how the bogus objects are injected into the
memory UNLESS we have extra references from the forensics.

3. In this case the below commands were figured in the swap-out area in
the hard disk free space sectors (from memory caching), the process
were injected with the below command line:
./f**ckyou -n ./bash.sh ./ld-ucclib.so

4. Fileless case ; In this case we know that adversaries knows what system
is used, cleverly faking inject base process & injected modules to then
deleting all (FILELESS).

5. Attackers tend to inject to 100% positive inject-able process (decoys).

What do we learn from this case #2?

92

OSINT is on!

93

OSINT shows the process injector part was originated from this code:

What do we learn from this case #2?

94

It uses also ptrace to enumerate memory for injection, but different
pattern:

Let’s reproduce, regen for memory forensics

Ptrace basis process injection other tools in incidents

These are the process injection resources aiming Linux that I faced so far
in MMD cases. None of these cases we published.

95

Other injection: Shared object (Mayhem framework)

96

This is case where LD_PRELOAD is used to inject malware shared object
into kernel to perform intercepting of a syscall. It’s ALMOST fileless..
See MMD blog for the further details

Mayhem framework : module installer injection

This threat is using LD_PRELOAD to load the Mayhem installer
shared_object into the memory & intercept syscall to download payloads.

97

Noteable process injection (with known) methods

These methods are not (yet) found in incidents but has a big potential to be
used by adversaries. Combination methods and scripting is used, so the
level is higher, a skillful attacker or frameworks can make a use of them

98

Next case method is “creative”, it uses “gdb” as armor ptrace but injecting
with __libc_dlopen_mode() , same concept as “gaffe23/linux-inject”

99

Noteable process Injection (with known) methods

https://github.com/gaffe23
https://github.com/gaffe23/linux-inject

100

Noteable process Injection (with known) methods

In Linux-inject, "state of injection" is set by ptrace functions and injection is
done by __libc_dlopen_mode() method via InjectSharedLibrary()

101

Noteable process Injection (with known) methods

Thank you Ghidra community & radare2 for integrating great compiler

radare2 is supported Ghidra decompiler, released in R2CON2019!

102

Noteable process Injection (with known) methods

sym.injectSharedLibrary() in Linux-inject looks like this:

Sophisticated
Fileless
Process
Injections

103

Fileless Malware and Process
Injection in Linux

1. Background
2. Post exploitation in Linux

○ Concept, Supporting tools
3. Process injection in Linux

○ Concept, Supporting tools
○ Fileless method

4. Components to make all of these
possible
○ Frameworks: concept, specifics,

examples
○ Components: Shellcodes,

Privilege Escalating & Payloads
5. A concept in defending our boxes

○ Forensics perspective
○ IR and resource management

model
6. Appendix

A combo of :
open(),
memfd_create(),
sendfile(),
and fexecve()

104

Incident #3 happens, getting into victim machine

105

What is WRONG in this picture? No artifacts, just a running memory..

Incident #3 happens, getting into victim machine

106

A weird “ping” is
connecting to a host,
running a memory,
has a “run/shm/a”.

/run/shm is like a
ramdisk in linux

107

Incident #3 happens, points are:

1. There is a bogus object called “a” in the ramdisk (tmpfs) “/run/shm/”
2. There is a bogus “ping” that is connected to a remote host
3. The “ping” and the “a” is related in one PID session

108

Incident #3 happens, points are:

4. Memspace for “a” and “ping” is not on the same workspace (see pic)
5. Timestamp shows that “ping” was executed few milliseconds earlier.
6. We assumed “ping” dropped “a” via this connection.
7. “ping” is fileless AND “a” resides in memory until rebooted.

109

You got a fileless?? injection!

(shortly) I reversed the “a” to find it is the “/bin/sh” binary..and..

110

Incident #3 happens, investigation

So that “ping” is not the “ping” but a backconnect parser to execute
remote port w/parsed (piped etc) blob of data to the “/run/shm/” as “a” (sh
binary) and executed it. Below is my IR process to “cook” this incident.

111

Incident #3 happens, investigation

112

Incident #3 happens, investigation

:> ps @0x400b39
”a”

What do we learn from this case #3 now?

113

1. What’s this? The scheme is clearly means to post exploit the system
using backconnect scheme. Remote host is serving binaries to be
dropped into the “/run/shm/” which is super cool, since for any Linux
init() switching can delete it completely.

2. It is working? Yes, judging that the “/bin/sh” is saved in the ramdrive to
on the victim machine.. That can be followed by execution other
commands afterward.
A miss in the operation process will make it readable like this case.

3. Other post exploitation has occurred? Maybe other binaries were
executed or dropped.. Do the COLD forensics is advised for handling.

4. Conclusion. In this case I concluded this preliminary analysis as per it
is,for the further forensics steps. I already knew that adversary could
not gain much connection by seeing the current spotted artifacts

What do we learn from this case #3?

114

OSINT is on!

115

OSINT shows the dropper was originated from this code. It's a stealth
dropper scheme to save the payload into the ramdisk & execute it.

What do we learn from this case #3?

116

In my test environment the code was working as per incident flow.

Let’s reproduce, regen for memory forensics

117

Following the OSINT trail further, finding that memfd_create NOW has
evolved to better fileless injection scheme, like shown in this post. The PoC
is in Perl, in this site (I tested, it works, FILELESS!)

Case #3, the memfd injection on tmpfs has evolved

118

Coded in python, is using memfd_create() as fileless

Now memfd injection is the “defacto” savviest Linux
fileless injection framework: FireELF

Yes, we are almost done,
but the worst is not coming yet...

119

Injector without libc,
bypassing ALSR,
multiple arguments..

The Mandibule

120

121

An incident that I can’t disclose is using this concept.

The mandibule

122

Behind the scene of reversing mandibule

123

Behind the scene of reversing mandibule (flow)

124

Behind the scene of reversing mandibule (regen)

How the injector works when it was tested

125

Behind the scene of reversing mandibule (regen)

The payload file will be injected in the memory of targeted process

126

Behind the scene of reversing mandibule (regen)

In radare2 ghidra the process looks very clear

1. The PRO of this injection
- Pivot of injection successfully bypass Linux ALSR
- Compiling w/ pie makes lesser libc usage == lesser trace
- We won’t know how payload gets in memory if this
 go to Post Exploitation Framework, that will be very BAD
- Harder forensics chains: “mandibule” injector is injected to the
 memory before “mandibule” injecting the code to a certain
 target address, then “mandibule” will be vanished after injection.
- Rich of optional parameters, wide applied possibility
 usage: ./mandibule <elf> [-a arg]* [-e env]* [-m addr] <pid>

2. The CONS
- ptrace is used to inject “mandibule” in the injectable memory
 before mandibule injecting payload to the certain addresses
 to then exit, if the injection method is using memfd_create or

 dlopen_mode (libc) this will be a problem in forensics. 127

Behind the scene of reversing mandibule (regen)

128

Behind the scene of reversing mandibule (regen)

The codes is having several bugs, fixed and run, I coded YARA rule:

129

Behind the scene of reversing mandibule (regen)

Works, in all scenarios of dynamic binary injection:.don't focus in ptrace!

Now let’s deploy the sigs into as many protection platforms as possible :)

130

Openly, I share sigs for IR folks, not those bins.

Chapter four - The components in framework

131

“The more you prepare, the better your chance..”

The components of Linux post exploit framework

If we put the exploitation and framework management (session setting
etc) aside, the main components of the Linux post exploitation framework
are as follows:
1. Shellcodes, where they are generated
2. Shell 101 (Backconnect, bind shell, reverse shell, etc shell) explained
3. Process injection method explained
4. Privilege escalation
5. Payloads for fileless explained
6. Payloads for persistence
7. The Smoke Screens (destroyers, noise, lockers, etc)

The merrier variation and option for each components, the better post
exploitation framework can work, and the nightmare for us as blueteamer.
But now we have prepared for it :) 132

A checklist
For
BlueTeamers

133

Fileless Malware and Process
Injection in Linux

1. Background
2. Post exploitation in Linux

○ Concept, Supporting tools
3. Process injection in Linux

○ Concept, Supporting tools
○ Fileless method

4. Components to make all of
these possible
○ Frameworks: concept,

specifics, examples
○ Components: Shellcodes,

Privilege Escalating &
Payloads

5. A concept in defending our boxes
○ Forensics perspective
○ IR and resource management

model
6. Appendix

The shellcodes checklist

● The Shellcodes
○ Shellcodes purpose

■ To gain shell
■ A loader, a downloader
■ Sockets are mostly in there, to connect, to pipe, etc

○ How we collect Shellcodes
■ Venom
■ Commercial frameworks: Empire, Cobalt Strike, or Metasploit
■ Self generated
■ Adversaries

○ Sources for shellcodes:
■ Exploit development sites
■ Vulnerability PoC
■ Trolling read teamer :-P 134

Linux shellcodes, it trains you: Venom & PacketStorm

135

Fire your radare2 (kudos), shellcode wrapper scheme

136

Linux payloads (their “malware” is NOT everything)

The Payloads
○ Persistency installer (crontab, xinetd, rc.local, Xwindows startup)
○ Rootkit
○ Backdoor:

■ Beacons
■ Loaders/Uploaders/Callbacks/Downloaders
■ Spreader (may have worm function too)

○ RAT:
■ Shell basis (xShell tookits)
■ Desktop basis (gtk basis, QT basis, C++ basis)
■ Custom purpose (different/another story)
■ Post exploitation framework or infrastructure base

○ Cultivation:
■ Miner
■ Botnets (Mayhem, Darkleech, Ddos101, many!)

137

Talk about Privilege Escalation a bit

● The Privilege Escalation basically can be grouped as :
○ By kernel / OS exploit
○ By binaries
○ By weak settings
○ Other vulnerabilities

● In the post exploitation legacy part we talk about privilege escalation
item called “binaries that can be injected to gain root”.

Let me introduce you to GTFO Bins used for a lot of privilege
escalation methods in linux post-exploitation incidents I handled..

138

Talk about Privilege Escalation a bit

139

Chapter five - Defending our boxes

140

“First thing, learning how to make a stand..”

How ready are we as the Blue Teamers?

1. I hope our SWOT diagram of our Blue Team situation is getting better
for Linux IR handling in dealing with Post Exploitation.

2. So many variation on Linux distro in devices or services to support
and to police with better policy.

3. "Firewall black hole": You can’t block what you don’t know.
4. ICS is different obstacle.
5. No, don’t say that three words started by “I” and ends with a “T”.
6. “Clouds”, you really want to go there?
7. Are you going to dump & fetch the payload yourself? Likely no..
8. “Err.. It’s shutdown now.. We scanned it beforehand though!”
9. We don’t record the outbound and inbound traffic from a legit daemon

process.. Well.. adversaries know it too.. (to fix)
10. Sharing your readiness scheme to others is “caring”.
11. More detection, more howto, more write-ups.. 141

Blue Teamer steps in handling process injection

1. Be resourceful enough to have access to live memory.
2. Use independent and good binary analysis tool, RADARE2 is my tool

for all binaries, and for forensics tools I am using Tsurugi a DFIR
Linux.

3. Investigate as per I show you in previous incident example cases,
adjust with your own policy and environments

4. Three things that we are good at blue teamer that can bring nightmare
to attackers, they are:
○ We break codes better
○ If we can combine analysis, re-gen and OSINT, combined with the

precaution research, the game is a bit more fair.
○ We must document our knowledge better.
○ Additional: OPSEC: Don’t share this to Red Teamer :)) {joke}

142

Precaution for Users, what can help them.

1. Linux is not Windows, if you don’t need some daemons or services,
take it off. Run stuff that you really need and you know it well.

2. Something that is not known, something that is just WRONG, these
are your hazards for incidents. Always test before deploying.

3. Act swiftly, hire sysadmins, we are born to be ready for this matter.
4. DO NOT SHUTDOWN, take it OFFLINE, contact for help.
5. Don’t scan for viruses if those hazards are there, you will make

forensics harder, offline the box, get the samples, call your CSIRT.
6. Backup, and check the backup status, regularly. Make sure the

logging, audit and journal systems runs well. Test them!
7. Share the hazard to the secure community, make channels, make

trusted friends.
8. Do you ever use audit tool for your box? Lynis or rkhunter is a good

start. ClamAV can custom signature, and Yara help developing them. 143

What Linux as OS may do more (for discussion)

1. More securing ptrace access for unauthorized processes and users.
Securing access to /proc/{pid}/mem and maps to the legitimate users
only

2. ALSR has to be more strict to not ever letting “friendly” process
injecting other process without interaction.

3. Linux is designed as secured OS. But its implementation is really
depending on us as “users”. SE Linux has been built to protect us, not
so many people use it. We think it has to be more than default
implementation to educate users to be more urged to learn to use it
well, to protect their boxes better.

144

Reference

145

Linux post exploit tools in open source:
https://github.com/r00t-3xp10it/venom
https://github.com/Ne0nd0g/merlin
https://github.com/huntergregal/mimipenguin
https://github.com/n1nj4sec/pupy
https://github.com/Manisso/fsociety
https://github.com/nil0x42/phpsploit
https://github.com/r3vn/punk.py
https://github.com/SpiderLabs/scavenger
https://github.com/Voulnet/barq
https://github.com/rek7/postshell
https://github.com/SofianeHamlaoui/Lockdoor-Framework
https://github.com/TheSecondSun/Bashark
https://github.com/threat9/routersploit

https://github.com/r00t-3xp10it/venom
https://github.com/Ne0nd0g/merlin
https://github.com/huntergregal/mimipenguin
https://github.com/n1nj4sec/pupy
https://github.com/Manisso/fsociety
https://github.com/nil0x42/phpsploit
https://github.com/r3vn/punk.py
https://github.com/SpiderLabs/scavenger
https://github.com/Voulnet/barq
https://github.com/rek7/postshell
https://github.com/SofianeHamlaoui/Lockdoor-Framework
https://github.com/TheSecondSun/Bashark
https://github.com/threat9/routersploit

Reference

146

Linux process injection projects in open source:
https://github.com/jtripper/parasite
https://github.com/hc0d3r/alfheim
https://github.com/XiphosResearch/steelcon-python-injection
https://github.com/kubo/injector
https://github.com/dismantl/linux-injector
https://github.com/Screetsec/Vegile
https://github.com/narhen/procjack
https://github.com/emptymonkey/sigsleeper
https://github.com/ParkHanbum/linux_so_injector
https://github.com/swick/codeinject
https://github.com/DominikHorn/CodeInjection
https://github.com/0x00pf/0x00sec_code/blob/master/sdropper/
https://github.com/ixty/mandibule

https://github.com/jtripper/parasite
https://github.com/hc0d3r/alfheim
https://github.com/XiphosResearch/steelcon-python-injection
https://github.com/kubo/injector
https://github.com/dismantl/linux-injector
https://github.com/Screetsec/Vegile
https://github.com/narhen/procjack
https://github.com/emptymonkey/sigsleeper
https://github.com/ParkHanbum/linux_so_injector
https://github.com/swick/codeinject
https://github.com/DominikHorn/CodeInjection
https://github.com/0x00pf/0x00sec_code/blob/master/sdropper/
https://github.com/ixty/mandibule

I thank HACKLU for having me doing this talk!

Many thanks to a lot of people that supports our
community give back efforts we do in MMD.
So many good people..
Thank you @pancake & radare dev good folks!

For the audience, if you find this useful, please:
0x0 - Blog your own found injection and
 share the knowhow to dissect them
0x1 - Remember, a responsible sharing is caring
0x2 - Present it in the 2020.HACK.LU!

Salutation and thank you

147

Question(s)?

148

