
Towards an Invisible Towards an Invisible Towards an Invisible Towards an Invisible 

Honeypot Monitoring ToolHoneypot Monitoring ToolHoneypot Monitoring ToolHoneypot Monitoring Tool

Hack.LuHack.LuHack.LuHack.Lu 2006200620062006

Nguyen Anh Quynh
<aquynh –at- gmail com>

Keio university, Japan



Who am I ?

�Nguyen Anh Quynh, a PhD student of 
Takefuji-lab, Keio university, Japan

�Interests: Network/Computer Security, 
Operating system, Robust system, 
Virtualization

�Non-geek hobby: traveling, reading and 
playing soccer



Motivation

�Sebek is a de-facto data capture tool of 

honeynet architecture

�But there are various ways to defeat Sebek 

because Sebek is not “invisible” enough

�Xebek is our solution on Xen Virtual Machine to 

address Sebek's problems

� More “invisible”

� More flexible

� Better performance



Overview

�Honeynet architecture and Sebek

�Sebek's problems

�Xebek comes to rescue

� Introduction to Xen Virtual Machine

� Xebek architecture & implementation

� Demonstration

�Q & A



Part I

�Honeynet architecture and Sebek

� Honeypot introduction

� Honeynet architecture

� Sebek technology



Honeypot technology

�What is a honeypot?

� The information system resource whose value 

lies in unauthorized or illicit use of that resource

� Has no production value, anything going in/out 

the honeypot is likely a probe/attack/compromise

� Primary value to most organizations is 

information



Honeypot impact
�Advantage

� High valuable data

� Reduce false 

positives

� Catch new attacks (0-
day bug?)

�Disadvantage

� Limited view

� Risk of take over



Honeypot types
Categorized based on level of interaction

Low-interaction

� Emulate services, 
applications, OSes

� Low risk and easy to 

deploy/maintain

� But captured 

information is limited

High-interaction

� Real services, 
application, OSes

� Capture extensive 

information

� But highly risk and 

hard to maintain

Honeyd Honeynet



How honeynet works
� A highly 

controlled 
network 
where every 
packet 
entering or 
leaving is 
monitored, 
captured 
and analyzed



Honeynet components
2 key components

� Data capture

� Data logging & analysis



Data capture
�Capture activities at various levels

� Application

� Network

� OS level



Data analysis
�Manage and analysis captured data from 

honeypots

� Investigate malware

� Forensic purpose



Honeynet generations
�Gen I

�Gen II, Gen III (currently)

� radical change in architecture focuses on the 

data capture tool

Sebek as a data capture tool



Sebek: a data capture tool
�Born in Honeynet Gen II

�Play a key role in Honeynet architecture

�Gen III (currently)



Sebekarchitecture

� Sebek components

� Data capture tool

� Central logging server

Sebek
client

Sebek server
(sebekd)



Sebek clienttechnique
� Data capture tool: patches system-calls 

(open/fork/read/write/socket)

� Send out gathered data via network-stack (UDP protocol)



Sebekfeatures

�hidden kernel module

�dumps activity to the network via UDP 
protocol to a central logging machine

�fool attacker by modifying network stack, 
so Sebek traffic is invisible (well, almost!)



Part 2
�Current problems of Sebek

� Easy to identify

� How easy it is?

• Possible even with unprileged user

� How ?

� 7 methods to defeat Sebek



Sebek clientrequirement

�Most vital requirement for a data capture 
tool: Function as covert as possible => 
Invisible problem

� Otherwise, game over

• No more chance to watch out the attacker

• No more chance to catch 0-day bug (daydream?)

• Attacker can destroy the honeypot

• Who fools who then?



But can Sebekdeliver?
�Hmm, not really. Various ways to defeat 

Sebek

� 1. Can be discover by even unprivileged user

� 2. Network statistics disclose Sebek

� 3. Brute-force scanning method

� 4. System-call address checking

� 5. Remove Sebek is feasible

� 6. Sniff at the right place

� 7. Bring down the central logging server



Method (1)
�Sebek can be discover by even unprivileged 

user

� dd-attack

• Generate lots of data

dd if=/dev/zero of=/dev/null bs=1

• Check to see if network congestion ?

Why?

Network stack is employed to send data out



Method (2)

�Network statistics disclose Sebek

� Compare dev->getstats()->tx_bytes with value 

found in /proc/net/dev

Why?

Network stack is employed to send data out



Method (3)

�Brute-force scanning method to detect 
hidden kernel module

� Look for hidden kernel module

� linux-airt tool by madsys

Why?

Sebekis implemented as a (hidden)kernel module



Method (4)
�System-call addresses checking

� System-call addresses at abnormal places?

Why?

Sebekreplaces 
original system-
calls



Method (5)
�Remove Sebek is feasible

� (unsebek.c by J.Corey)

� Look for the sys_call_table by scanning in 

memory

� Recover original system-call with exported 

symbols

Why?

Sebekreplaces orginal system-calls



Method (6)

�Detect honeypot with Sebek

� Sniff at the right place from outside

sebekd

Sebek client UDP
packets

Attacker with sniffer

Why?

Sebeksends data 
out to other 
machine



Method (7)
�Bring down the central logging server

� Data logging server (sebekd) has vulnerable 

libpcap?

Sebekd
with buggy libpcap

Attacker Malicious
packets

Why?

sebekdexposed to 
network



Reasons make Sebeksux☺

�(1) Uses network stack to send data out

�(2) Logging data sent out can be sniffed online

�(3) Function as kernel module + replace 
original system-calls

�(4) Central logging server (sebekd) exposed to 
the network

�(5) Data transfer might not be reliable (UDP)



Do you still think that current 

honeynet can fool skillful 

hackers?

�I seriously doubt that!

�Should we give up? 

�No, let's keep fighting and raise 
the bar a little bit ;-)



Part 3

Xebek comes to rescue

�Virtual honeypot on virtual machine

�Xen Virtual Machine technology

�Xebek solution



Fix Sebek's problems

�Bring up virtual machine technology: Xen

�Exploit the advantage introduced by Xen 
to address discussed problems



Xen 3.0 Architecture

Event Channel Virtual MMUVirtual CPU Control IF

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

Native
Device
Driver

GuestOS
(XenLinux)

Device 
Manager & 
Control s/w

Domain-0

Native
Device
Driver

GuestOS
(XenLinux)

Unmodified
User

Software

Domain-U

Front-End
Device Drivers

GuestOS
(XenLinux)

Unmodified
User

Software

Domain-U

Front-End
Device Drivers

Unmodified
GuestOS
(WinXP))

Unmodified
User

Software

Domain-U

Safe HW IF

Xen Virtual Machine Monitor

Back-End Back-End

VT-x

32/64bit

AGP
ACPI
PCI

SMP



Xen's main components 

�Xen hypervisor runs on top of hardware

�Domains with modified kernel for Xen 

architecture, run on top of Xen

�Special device drivers in Dom0 & DomU 

(backend-frontend architecture)

�Xen control tools in Dom0 (xend, xm)

�Others: xenbus, xenstore, event-channel, 

balloon driver, ...



Xen's future: Bright 

�Xen 3.0 was realeased at the end of 2005

�Xen 3.0.3 will be out very soon

�Object: to be gradually merged into Linux 

kernel in 2006

�Already adopted by ISPs, datacenters, banks,...

�Will be widely used in the near future



Xen-based honeynet

Event Channel Virtual MMUVirtual CPU Control IF

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

Native
Device
Driver

GuestOS
(XenLinux)

Device 
Manager & 
Control s/w

Domain-0

GuestOS
(XenLinux)

Unmodified
User

Software

Front-End
Device Drivers

GuestOS
(XenLinux)

Unmodified
User

Software

Front-End
Device Drivers

Unmodified
GuestOS
(WinXP))

Unmodified
User

Software

Safe HW IF

Xen Virtual Machine Monitor

Back-End SMP

Front-End
Device Drivers



Xebeksolution for Xen-based 

honeynet

�Xebek: Goals and approaches

�Xebek Architecture

�Xebek Implementation’s issues

�Xebek Evaluation

�Hardening Xebek

�Detecting Xebek



Xebekgoals and approaches

�(1) Capture data as Sebek does, but with some 

improvements

�(2) Eliminate problems of leaving too many 

traces when forwarding data out

�(3) Harden the central logging server



Goal (1)
� Capture data as Sebek does, but with some 

improvements

� Sebek3 captures data by intercepting system-calls 
(read/write/open/fork/socket)

� ==> so Xebek does.

� But Xebek patches the system-calls, so Xebek does 

not run as a kernel module

(1) Uses network stack to send data out

(2) Data can be sniffed

(3) Function as KLM & replace original system-calls

(4) Central logging server exposed to the network

(5) Data transfer might not be reliable (UDP)



Goal (2)
� Eliminate problems of leaving too many traces when 

forwarding data out

� Xebek does not use network stack to deliver data as 
Sebek does

� Using shared memory between DomU and 

Dom0 instead to exchange data

(1) Uses network stack to send data out

(2) Logging data can be sniffed online

(3) Function as KLM & replace original system-calls

(4) Central logging server exposed to the network

(5) Data transfer might not be reliable (UDP)



Goal (3)
�Harden the central logging server

� Put the central logging server in Dom0 to pick 

up data forwarded from DomU

� No more exposed to the network

(1) Uses network stack to send data out

(2) Data can be sniffed

(3) Function as KLM & replace original system-calls

(4) Central logging server exposed to the network

(5) Data transfer might not be reliable (UDP)



Xebekarchitecture



xebekU

�Xebek component in DomU's kernel

� patch the system-calls 

(open/read/write/fork/socket)

� establish shared memory with Dom0

� put the gathered data from system-calls to 

shared-memory, then notifies xebekd



xebekd
�logging recorder in Dom0

� waits for notification from xebekU

� pick up data in shared-memory, then save to 

corresponding logging file

� notify xebekU on completion



Xebekutilities



xebekd: multiple threading
�main thread

�worker 
thread



Coding
� Version 0.2 – Linux based DomU only ATM

� Kernel patch

� xebekd + xebeklive+ xkeys: 1676 lines

� xebekU: 1848 lines (linux-2.6.16-rc2)

� Small increase in kernel binary size

• 946550 bytes -> 948494 bytes

� Small patch to kernel 



Patching kernel/fork.c::do_fork())
#ifdef CONFIG_XEN_XEBEK

struct xebek_packet p;

if (my_private.active) {

p.event = EVT_FORK;

fill_time(&p.time);

p.size = sizeof(current->comm);

p.version = XEBEK_VERSION;

p.magic = XEBEK_MAGIC;

p.uid = current->uid;

p.ppid = current->parent->pid;

p.pid = current->pid;

copy_to_buffer(&p, current->comm, p.size, 0);

}

#endif



Compile Configuration



Xebekevaluation

1085.241 (3.25%)1100.262 (4.68%)1050.991UDP

1004.912 (19.31%)1276.562 (51.56%)842.256TCP

900.421 (~0%)900.433 (~0%)900.380FORK

1.822 (64.69%)1.113 (-)1.106WRITE

1.968 (61.13%)972.649 (~976 times)1.221READ

9.720 (18.62%)1509.073 (~184 times)8.194OPEN

XebekSebekNativeMethod

LMBench benchmark results



Hardening Xebek

�Harden DomU: 

� Protect kernel binary? No need ☺

� Protect kernel symbol? No need ☺

� Shutdown all the paths to the kernel

• No kernel module loading

• /dev/{kmem, mem, port} removed

�Harden Dom0

� Harden system (SELinux, LIDS, AppArmor)

� Run Dom0 with no network access



DetectingXebek
�Intruder gains kernel access ?

� We are vulnerable to the brute-force scanning 
method on kernel memory

� Block all path to kernel.

�Intruder has no kernel access?

� Timing attack based on syscall latency?

� Impossible to solve completely !!! �

�Removing kernel access might be suspicious !!!



Demonstration



Future work

�Analysis tool: Adapt Walleye for Xebek

�Maintenance Xebek patch for different kernel 

versions (costly?)

�Make Xebek more flexible

� Adapt Xebek to the latest Sebek scheme

� Optimize to further reduce latency

� Port Xebek to other platforms like *BSD/Solaris/…

� ???



Xebek2in progress

�As stealthy as Xebek

�No need to patch DomU’s kernel, no need any 

userspace process, either. 

�Of course no need to change the hypervisor 

(Xen) layer for Xebek2 to work

�Absolutely no change to DomU!!!

�Stay tuned for Hack.lu 2007 ☺



Conclusions

Xebek is a robust data capture tool for Xen-
based virtual honeypot

� More “invisible”

� More reliable/flexible

� Open source: To be released under GPL licencse

soon around end of 2006 (when I have more 

free time �)



Thank you!

Questions/Comments?

Towards an Invisible 
Honeypot Monitoring Tool

Nguyen Anh Quynh
<aquynh –at- gmail com>

Keio university, Japan


