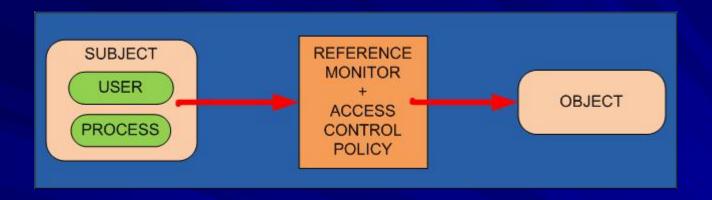
Cracking Windows Access Control

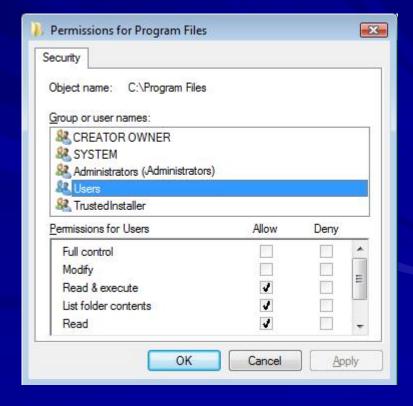

Andrey Kolishchak www.gentlesecurity.com

Hack.lu 2007

Outline

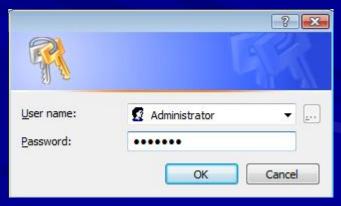
- Introduction into access control
- Windows access control weaknesses
- The demo
- Vista mandatory levels
- Exploiting mandatory levels
- Per-application access control

Discretional & Mandatory Access Control



- Discretional Access Control
 - Access policy that depends on a user
 - Access Control Lists (ACL) and capabilities
- Mandatory Access Control (MAC)
 - Access policy decreed by system

Windows Access Control (DAC)


A controllable object has a list of assigned permissions (ACL), USER x OBJECT

	Object_A	Object_B
USER_1	READ	WRITE
USER_2	EXECUTE	NONE
USER_N	READ WRITE	READ

Windows DAC Weaknesses, I

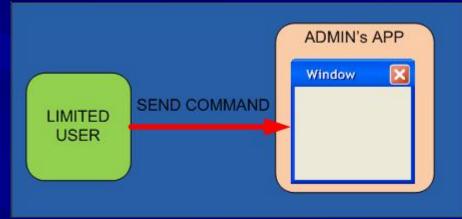
- Dependence on proper user authentication
 - Social engineering;
 - Stealing authentication information and keys;
 - Passwords brute-forcing and sniffing over the network;
 - Key-logging.
 - Etc.

Windows DAC Weaknesses, II

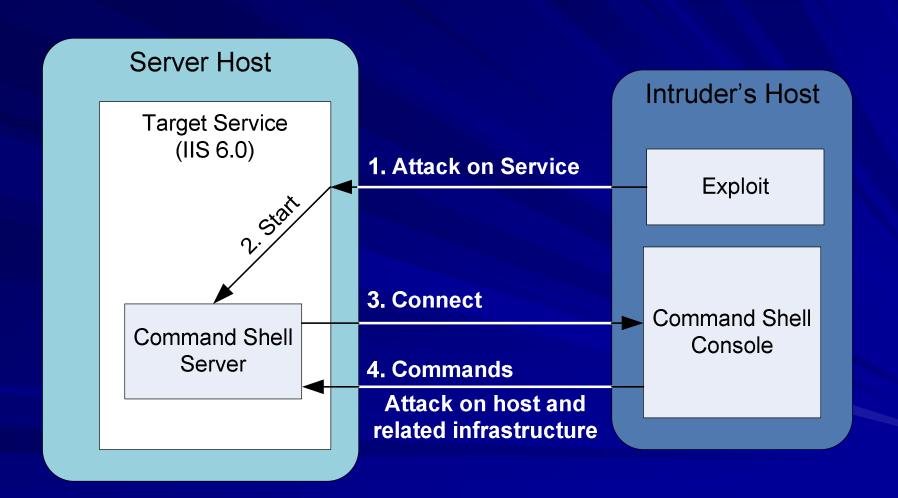
- Impersonation
 - Allows a server application to substitute its security identity by the identity of client
 - Elevation: server receives privileges of client
 - Attacks
 - DOS + faked servers exposing RPC, named pipes, COM and other interfaces
 - Vulnerable services
 - All services are affected

Windows DAC Weaknesses, III

- Complexity of ACLs configuration
 - Weak permissions allow full access to
 Everyone, Users and Authenticated Users
 - Typical attack


- Affected: Microsoft, Adobe, Macromedia,
 AOL, Novell, etc.
- Accesschk.exe users -wsu "%programfiles%"

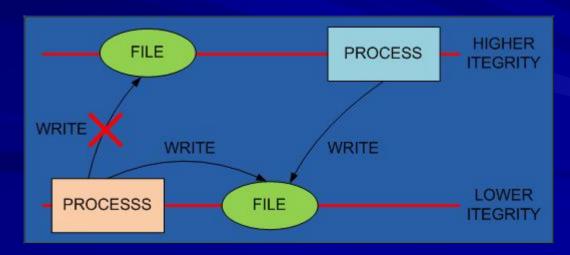
Windows DAC Weaknesses, IV


- Creator (owner) of object implicitly receives full permissions
 - Owner may write object's ACL
 - Attacks
 - Permissions revocation
 - Code injection in the processes run by the same user (NetworkService, LocalService)
 - Addressed in Windows Vista
 - Owner Rights SID
 - Unique service SID (requires updated service)

Windows DAC Weaknesses, V

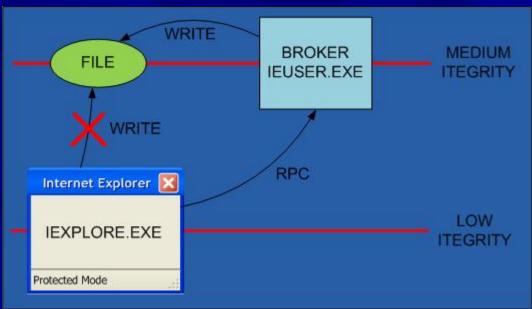
- Permissions cannot be assigned to all objects, e.g.
 - Network
 - Windows subsystem
 - Shatter attacks
 - SetWindowsHook
 - Keyloggers
 - code injection

The Demo

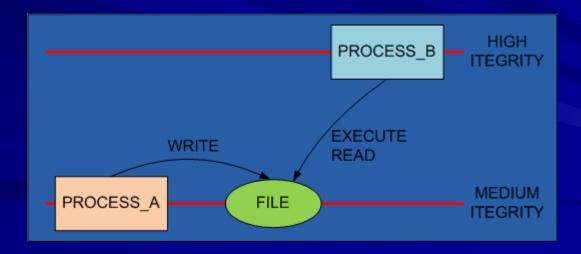


Interesting Facts

- NetworkService account is nearly the same as LocalSystem
- MS SQL service running as a unique user account can be elevated up to LocalSystem
- Any service's context could be elevated to LocalSystem
- NetworkService account has permissions to sniff network traffic
- An intruder can conduct attacks without introducing additional executable files
 - CodeRed
 - Remote shell via FTP tunnel is just 20 lines VBS script


Mandatory Integrity Levels (IL), I

- Integrity Level is an ordered label that define trustworthy of running applications and objects
 - Low, Medium, High and System
 - Mapped to users
- Mandatory Policies restrict lower IL applications
 - No-Write-Up, No-Read-Up and No-Exec-Up


Mandatory Integrity Levels (IL), II

- User Interface Privilege Isolation (UIPI)
- IE Protected Mode
 - lexplore.exe at Low, renders html
 - leuser.exe at Medium, broker for privileged operations

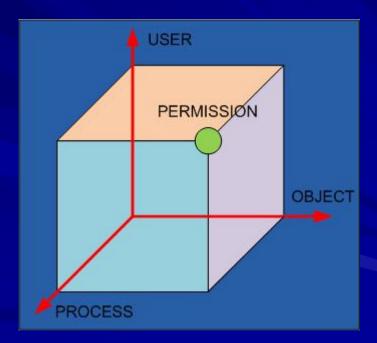
Exploiting Integrity Levels, I

- Medium IL assigned to all objects created at MI and above levels
 - all objects, such as files, are shared
 - No strict boundary between MI and above

Exploiting Integrity Levels, II

- Bypassing UIPI via automation applications
 - Restrictions
 - ■UIAccess="true" in the manifest
 - Digital signature
 - %ProgramFiles% or %WinDir%
 - High or +16 IL
 - Attacks
 - Side-by-side DLL injection in writable a %ProgramFiles%
 - Medium-16+16 = Medium

Exploiting Integrity Levels, III


- Vulnerable brokers
 - AppInfo's handle leak bug found by Skywing (fix in SP1)
 - Bypassing IE's Protected Mode
 - Any RPC interface might be affected
- ILs are not enforced over the network
- No-Read-Up is not used for files in the default configuration
 - Low Integrity process may read files

Integrity Levels Limitations

- A strict security boundary enforced for Low Integrity processes
- The usage is limited
 - Configuration is restricted, requires re-design of applications
 - Capacity of Low Integrity pool is limited due to shared resources, e.g.
 - An e-mail database accessible by browser

Per-Application Access Control

- New dimension in access control matrix, a process: PROCESS x USER x OBJECT
 - True least privileges
 - Over-complicated

Addressing The Complexity

- Application permissions repository
 - Centralized
 - Attached to applications, e.g. manifests
- Hiding part of permissions behind a mandatory model, such as
 - Windows Integrity Levels
 - Information-flow control
 - Role-based

Thank You!

Questions?