
Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Peeking into Pandora's Bochs

{

Instrumenting a Full System Emulator to Analyse

Malicious Software

Lutz B�ohne (lutz.boehne@redteam-pentesting.de)
RedTeam Pentesting GmbH

http://www.redteam-pentesting.de

October, 28th, Luxembourg
hack.lu 2009

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

About Myself
About RedTeam Pentesting

About Myself

F Lutz B�ohne

F Graduated in 2008 from RWTH Aachen University

F Now employed by RedTeam Pentesting GmbH

F Talk will cover some work I did for my Diploma Thesis

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

About Myself
About RedTeam Pentesting

About RedTeam Pentesting

F Founded 2004 in Aachen, Germany

F Specialisation exclusively on
penetration tests

F Worldwide realisation of penetration tests

F Research in the IT security �eld

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Runtime Packers

Motivation

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Runtime Packers

Motivation

F malware is an ever-increasing threat

F example: Symantec generated more than 1.6 million new
malware signatures in 20081, a 165% increase over 2007

F automated analysis of malware a necessity due to large
number of samples

F also: malware often runtime-packed

F lack of free and open source analysis tools

1
http://www.symantec.com/business/theme.jsp?themeid=threatreport

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs

http://www.symantec.com/business/theme.jsp?themeid=threatreport


Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Runtime Packers

Figure: PE binaries - on disk and in memory

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Runtime Packers

headers

.text

.data

.rsrc

headers

.text

.data

.rsrc

stub

headers

.text

.data

.rsrc

stub

headers

.text

.data

.rsrc

stub

.text

.data

.rsrc

Compression Decompression

Figure: How runtime packers work

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Runtime Packers

Runtime Packers - Compression

When packing a binary,

F the original code and data are packed or encrypted

F a small stub to unpack or decrypt the original code and data
is added

F the entrypoint is set to the stub's �rst instruction

F often, the original import information is removed

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Runtime Packers

Runtime Packers - Decompression

When executing a runtime-packed binary,

F �rst, the stub is executed to decompress or decrypt the
original code and data

F second, the stub performs some tasks normally carried out by
the PE loader, such as import resolution

F �nally, the stub transfers control to the original code, for
example by jumping to the so-called Original Entry Point
(OEP)

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Runtime Packers

Analysing runtime-packed executables

Static analysis

F code that is unpacked at runtime is typically not visible to
static analysis methods

F static analysis of the unpacking stub is sometimes hampered
by anti-disassembly techniques

Dynamic analysis

F some runtime-packers employ anti-debugging techniques to
hamper dynamic anlysis

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Runtime Packers

Weaknesses of typical runtime packers

F CPUs can only execute \plain text" code

F that code is \generated" at runtime by the unpacking stub
and is at some point visible in memory

F typical approach: monitor execution of the unpacking stub and
dump process memory whenever new code is being executed

F several projects deal with automated unpacking, but tools or
source code are rarely released to the public.

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

Implementing an automated unpacker

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

Bochs

Pandora's Bochs is based on Bochs2

F FOSS PC Emulator

F written in C++

F built-in debugger

F supports instrumentation

2
http://bochs.sourceforge.net

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs

http://bochs.sourceforge.net


Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

Pandora's Bochs

Pandora's Bochs originally designed as an automatic unpacker.
Challenges:

F unobtrusiveness

F awareness of guest-OS semantics

F OEP detection

F termination

F reconstruction of valid PE �les

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

Instrumentation

Bochs can instrument certain events, for example

F modi�cation of the CR3 (Page Directory Base) register

F memory accesses (writes)

F execution of branch instructions

! ideal for monitoring the unpacking process

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

Boch's Instrumentation Facilities

Bochs has many macros with inscrutable names. One

might even go as far as to say that Bochs is macro

infested. - Bochs Developers Guide

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

Bochs's Instrumentation Facilities

Implemented as a set of macros that are used throughout the
emulator source code, for example:

F BX_INSTR_TLB_CNTRL(cpu_id, what, new_cr3)

F BX_INSTR_CNEAR_BRANCH_TAKEN(cpu_id, new_eip)

BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(cpu_id)

BX_INSTR_UCNEAR_BRANCH(cpu_id, what, new_eip)

BX_INSTR_FAR_BRANCH(cpu_id, what, new_cs, new_eip)

F BX_INSTR_LIN_ACCESS(cpu_id, lin, phy, len, rw)

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

Instrumentation

I prefer Python to C++, therefore wrote a Python interface:

F Bochs is linked against the Python interpreter library

F Bochs provides its own \module" that allows anything
running within the Python interpreter to query emulator state
(for example memory, registers)

F at emulation startup, a module written in Python is imported

F instrumentation macros essentially call a set of functions
exported by the Python module

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

Instrumentation

Instrument at two di�erent levels of granularity:

F coarse-grained instrumentation: whenever the CR3 register is
modi�ed, determine whether the current process is of interest.
Turn �ne-grained instrumentation on or o� accordingly.

F �ne-grained instrumentation: if the current process is
monitored,
F record memory writes
F monitor branches
! check whether the branch target is modi�ed memory

All processes and their corresponding PE images are logged to a
database. So are (optionally) branches and writes.

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

Identifying Processes on x86

F Modern operating systems provide each process with its own
4-GB virtual address space

F x86 memory management unit uses page directories and page
tables (\two-level paging") to translate virtual to physical
memory addresses

F page directory base register (CR3) contains physical address
of active page directory
! active page directory identi�es active virtual address space
! every process identi�ed by unique CR3 value

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

Figure: Paging on the x86 architecture

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

Figure: Segmentation on the x86 architecture

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

KPCR

KPRCB

ETHREAD EPROCESS

NtTib
SelfPcr
Prcb
...
PrcbData

MinorVersion
MajorVersion
CurrentThread
NextThread
IdleThread
...

Tcb

Header
MutantListHead
InitialStack
...
ApcState

ApcListHead
Process
...

ProcessLock
...
UniqueProcessId
ActiveProcessLinks
...
ImageFileName
...
Peb
...

KPROCESS

Header
ProfileListHead
DirectoryTableBase
LdtDescriptor
...0x000

0x002
0x004
0x008
0x00c

0x000
0x01c
0x020

0x120

KTHREAD

KAPC_STATE

0x000
0x010
0x018

0x034

0x000
0x010

0x000 0x000 Pcb

0x000
0x010
0x018
0x020

0x06c

0x084
0x088

0x174

0x1b0

...

...

At fs:0 (segment descriptor 0x30) in kernel-mode:

Figure: Identifying the current process in Windows (XP)

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

Figure: More information about the current process

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

Memory Dumps

Whenever a branch targets memory that was previously written to
by the same process, that memory region is dumped to a database

F region to dump identi�ed by VAD tree3.
F data structure in kernel space
F contains information about a processes' virtual address space
! stack, heap, memory-mapped �les

F need to continue execution, in case there is more to unpack
! memory around the current branch target is marked clean

3
See Brendan Dolan-Gavitt. The VAD tree: A process-eye view of physical memory. Digital Investigation,

Volume 4, Supplement 1:62{64, September 2007.

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

OEP Detection

Branches to modi�ed memory regions are OEP candidates
Limitations:

F only the �rst branch to such a memory region

F only branch targets within the original process image

F last candidate is the most likely ! when to stop monitoring?

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

Termination

It is undecideable whether new code will be unpacked
! when to stop unpacking?

F Fixed timeout can guarantee termination

F Before that timeout, track \innovation". A process shows
innovation, if
F there are many memory writes per unique branch target
F new DLLs appear in the process image
F modi�ed memory is executed
F an API function not called before is called
F stop emulation after a con�gurable number of task switches

where no monitored process showed innovation

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

Reconstructing a valid PE �le from a memory image

F copy original headers to the end of the �le and zero-pad them

F make \PE Signature O�set" point to the copied headers

F set \Entry Point" to the detected OEP

F set \File Alignment" to \Section Alignment" and correct all
section headers

F append new section header for a new section named
.pandora that contains the copied headers

F reconstruct Imports

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

Import Reconstruction

Import Address Table (IAT):

F on-disk: describes which library functions to resolve

F normally �lled by the PE loader with of addresses of library
functions

F in packed executables, typically �lled by the unpacker stub

Reconstruction:

F �nd all branches from within the process image to a DLL

F disassemble the branch instruction
! operands of indirect jumps are potentially within an IAT

F inspect potential IAT, and try to resolve symbols
! reconstruct IAT and corresponding headers

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

API Call Tracing

API Call tracing yields information about a malware sample's
behaviour

F branch instructions are instrumented anyway
! little overhead to check if branch target is an API function

F need to know API function prototype to determine stack
layout for API call arguments

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

GCC-XML4

There is one open-source C++ parser, the C++

front-end to GCC, which is currently able to deal with

the language in its entirety. The purpose of the

GCC-XML extension is to generate an XML description

of a C++ program from GCC's internal representation.

Since XML is easy to parse, other development tools will

be able to work with C++ programs without the burden

of a complicated C++ parser.

4http://www.gccxml.org

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs

http://www.gccxml.org


Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

GCC-XML Output

<Function id="_9749" name="GetProcAddress" returns="_9622"

context="_1" location="f2:2610" file="f2" line="2610"

extern="1" attributes="dllimport __stdcall__">

<Argument name="hModule" type="_8702" ... />

<Argument name="lpProcName" type="_6677" ... />

</Function>

<Typedef id="_6677" name="LPCSTR" type="_2864" ... />

<PointerType id="_2864" type="_294c" size="32" align="32"/>

<CvQualifiedType id="_294c" type="_294" const="1"/>

<Typedef id="_294" name="CHAR" type="_293" ... />

<FundamentalType id="_293" name="char" size="8" align="8"/>

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

pygccxml5 to the rescue

Using pygccxml, we can use GCC-XML's output from python, to

F query functions by name

F inspect function prototypes

F determine the stack layout for function calls

Current implementation

F handles character strings and integers

F doesn't know anything about input and output parameters

F doesn't handle return values

F has basic support for handling stolen bytes

5http://www.language-binding.net/pygccxml/pygccxml.html

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs

http://www.language-binding.net/pygccxml/pygccxml.html


Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Instrumentation
Identifying and Monitoring Processes
Termination
Reconstruction
API Call Tracing

Stolen Bytes

A method employed by some executable protectors. Basic idea:

F copy �rst N instructions of an API function to someplace else

F append a jump to the (N+1)th instruction

F modify import information to call the copied bytes

Basic countermeasures:

F if a branch target is not an exported symbol, use the one with
the next-smallest address

F disassemble instruction stream from there to the branch target

F keep track of and adjust for instructions that modify ESP

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Synthetic Samples
Malware Samples

Results

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Synthetic Samples
Malware Samples

Results - Criteria

F Unpacking Time

F OEP detection

F Does the unpacked code match the original code (.text
section)

F Could a valid and executable PE image be reconstructed

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Synthetic Samples
Malware Samples

Results - Synthetic Samples

F Generated by packing two di�erent binaries, Notepad (68kB)
und Wget (732kB)

F 30 di�erent runtime packers, using their default con�guration

F Only 20 packed Notepad samples would execute

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Synthetic Samples
Malware Samples

Results - Synthetic Samples

F hidden code could be extracted from almost all samples

F OEP detected correctly for 80% of all samples

F valid, executable PE images could be reconstructed for 58% of
all samples

F major obstacle to reconstruction: modi�cation of the original
code by a packer

F unpacking times from several minutes to an hour or more
! could be somewhat improved by logging less extensively

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Synthetic Samples
Malware Samples

Malware Samples

F 409 samples, collected over the course of one month by the
RWTH Aachen Honeynet

F 379 known malware (ClamAV), 239 runtime-packed(PEiD)

F 361 started execution and 343 executed modi�ed memory

F average run time was 7 minutes and 21 seconds

F Dr. Whatson started in 152 cases

F analysis indicates most of them could be unpacked correctly

F need to do more real-world testing

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Conclusion

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Conclusion and Future Work

F plain unpacking seems to work fairly well, appears to be
largely immune to anti-debugging techniques

F API call tracing not heavily tested
F results so far look promising

! future work: track return values, output parameters

F major obstacle to reconstruction of valid PE images:
F executable protectors that modify the original code
F examples: stolen bytes, API call/entry point obfuscation

! need better, interactive tools?

F emulation speed is subpar, some compatibility issues
! use di�erent emulator/virtualizer?
! pro�le and optimise instrumentation code

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Additional Information

F My Thesis is available at
https://0x0badc0.de/PandorasBochs.pdf

F Git repository:
F mirrors the Bochs CVS repository
F Pandora's Bochs commited into a branch pandoras bochs
F moving target, used more as a version-controlled backup
F clone from git://0x0badc0.de/home/repo/git/bochs
F Gitweb at https://0x0badc0.de/gitweb?p=bochs/.git

F Slides will be made available at
http://www.redteam-pentesting.de

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs

https://0x0badc0.de/PandorasBochs.pdf
https://0x0badc0.de/gitweb?p=bochs/.git
http://www.redteam-pentesting.de


Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Questions?

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Figure: Unpacking MEW11SE 1.2

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Figure: Unpacking Neolite 2.0

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Figure: Unpacking nPack 1.1300beta

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Figure: Unpacking PESpin 1.304

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Figure: Unpacking tELock 0.98

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs



Introduction
Motivation

Implementing an automated unpacker
Results

Conclusion

Figure: Unpacking UPX 3.01

Lutz B�ohne - RedTeam Pentesting GmbH Peeking into Pandora's Bochs


	Introduction
	About Myself
	About RedTeam Pentesting

	Motivation
	Runtime Packers

	Implementing an automated unpacker
	Instrumentation
	Identifying and Monitoring Processes
	Termination
	Reconstruction
	API Call Tracing

	Results
	Synthetic Samples
	Malware Samples

	Conclusion

