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About RedTeam Pentesting

About Myself

F Lutz B�ohne

F Graduated in 2008 from RWTH Aachen University

F Now employed by RedTeam Pentesting GmbH

F Talk will cover some work I did for my Diploma Thesis
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About RedTeam Pentesting

About RedTeam Pentesting

F Founded 2004 in Aachen, Germany

F Specialisation exclusively on
penetration tests

F Worldwide realisation of penetration tests

F Research in the IT security �eld
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Motivation

F malware is an ever-increasing threat

F example: Symantec generated more than 1.6 million new
malware signatures in 20081, a 165% increase over 2007

F automated analysis of malware a necessity due to large
number of samples

F also: malware often runtime-packed

F lack of free and open source analysis tools

1
http://www.symantec.com/business/theme.jsp?themeid=threatreport
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Figure: PE binaries - on disk and in memory
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Figure: How runtime packers work
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Runtime Packers - Compression

When packing a binary,

F the original code and data are packed or encrypted

F a small stub to unpack or decrypt the original code and data
is added

F the entrypoint is set to the stub's �rst instruction

F often, the original import information is removed
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Runtime Packers - Decompression

When executing a runtime-packed binary,

F �rst, the stub is executed to decompress or decrypt the
original code and data

F second, the stub performs some tasks normally carried out by
the PE loader, such as import resolution

F �nally, the stub transfers control to the original code, for
example by jumping to the so-called Original Entry Point
(OEP)
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Analysing runtime-packed executables

Static analysis

F code that is unpacked at runtime is typically not visible to
static analysis methods

F static analysis of the unpacking stub is sometimes hampered
by anti-disassembly techniques

Dynamic analysis

F some runtime-packers employ anti-debugging techniques to
hamper dynamic anlysis
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Weaknesses of typical runtime packers

F CPUs can only execute \plain text" code

F that code is \generated" at runtime by the unpacking stub
and is at some point visible in memory

F typical approach: monitor execution of the unpacking stub and
dump process memory whenever new code is being executed

F several projects deal with automated unpacking, but tools or
source code are rarely released to the public.
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Implementing an automated unpacker
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Bochs

Pandora's Bochs is based on Bochs2

F FOSS PC Emulator

F written in C++

F built-in debugger

F supports instrumentation

2
http://bochs.sourceforge.net
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Pandora's Bochs

Pandora's Bochs originally designed as an automatic unpacker.
Challenges:

F unobtrusiveness

F awareness of guest-OS semantics

F OEP detection

F termination

F reconstruction of valid PE �les
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Instrumentation

Bochs can instrument certain events, for example

F modi�cation of the CR3 (Page Directory Base) register

F memory accesses (writes)

F execution of branch instructions

! ideal for monitoring the unpacking process
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Boch's Instrumentation Facilities

Bochs has many macros with inscrutable names. One

might even go as far as to say that Bochs is macro

infested. - Bochs Developers Guide
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Bochs's Instrumentation Facilities

Implemented as a set of macros that are used throughout the
emulator source code, for example:

F BX_INSTR_TLB_CNTRL(cpu_id, what, new_cr3)

F BX_INSTR_CNEAR_BRANCH_TAKEN(cpu_id, new_eip)

BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(cpu_id)

BX_INSTR_UCNEAR_BRANCH(cpu_id, what, new_eip)

BX_INSTR_FAR_BRANCH(cpu_id, what, new_cs, new_eip)

F BX_INSTR_LIN_ACCESS(cpu_id, lin, phy, len, rw)
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Instrumentation

I prefer Python to C++, therefore wrote a Python interface:

F Bochs is linked against the Python interpreter library

F Bochs provides its own \module" that allows anything
running within the Python interpreter to query emulator state
(for example memory, registers)

F at emulation startup, a module written in Python is imported

F instrumentation macros essentially call a set of functions
exported by the Python module
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Instrumentation

Instrument at two di�erent levels of granularity:

F coarse-grained instrumentation: whenever the CR3 register is
modi�ed, determine whether the current process is of interest.
Turn �ne-grained instrumentation on or o� accordingly.

F �ne-grained instrumentation: if the current process is
monitored,
F record memory writes
F monitor branches
! check whether the branch target is modi�ed memory

All processes and their corresponding PE images are logged to a
database. So are (optionally) branches and writes.
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Identifying Processes on x86

F Modern operating systems provide each process with its own
4-GB virtual address space

F x86 memory management unit uses page directories and page
tables (\two-level paging") to translate virtual to physical
memory addresses

F page directory base register (CR3) contains physical address
of active page directory
! active page directory identi�es active virtual address space
! every process identi�ed by unique CR3 value
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Figure: Paging on the x86 architecture
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Figure: Segmentation on the x86 architecture
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At fs:0 (segment descriptor 0x30) in kernel-mode:

Figure: Identifying the current process in Windows (XP)
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Figure: More information about the current process
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Memory Dumps

Whenever a branch targets memory that was previously written to
by the same process, that memory region is dumped to a database

F region to dump identi�ed by VAD tree3.
F data structure in kernel space
F contains information about a processes' virtual address space
! stack, heap, memory-mapped �les

F need to continue execution, in case there is more to unpack
! memory around the current branch target is marked clean

3
See Brendan Dolan-Gavitt. The VAD tree: A process-eye view of physical memory. Digital Investigation,

Volume 4, Supplement 1:62{64, September 2007.
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OEP Detection

Branches to modi�ed memory regions are OEP candidates
Limitations:

F only the �rst branch to such a memory region

F only branch targets within the original process image

F last candidate is the most likely ! when to stop monitoring?
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Termination

It is undecideable whether new code will be unpacked
! when to stop unpacking?

F Fixed timeout can guarantee termination

F Before that timeout, track \innovation". A process shows
innovation, if
F there are many memory writes per unique branch target
F new DLLs appear in the process image
F modi�ed memory is executed
F an API function not called before is called
F stop emulation after a con�gurable number of task switches

where no monitored process showed innovation
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Reconstructing a valid PE �le from a memory image

F copy original headers to the end of the �le and zero-pad them

F make \PE Signature O�set" point to the copied headers

F set \Entry Point" to the detected OEP

F set \File Alignment" to \Section Alignment" and correct all
section headers

F append new section header for a new section named
.pandora that contains the copied headers

F reconstruct Imports
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Import Reconstruction

Import Address Table (IAT):

F on-disk: describes which library functions to resolve

F normally �lled by the PE loader with of addresses of library
functions

F in packed executables, typically �lled by the unpacker stub

Reconstruction:

F �nd all branches from within the process image to a DLL

F disassemble the branch instruction
! operands of indirect jumps are potentially within an IAT

F inspect potential IAT, and try to resolve symbols
! reconstruct IAT and corresponding headers
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API Call Tracing

API Call tracing yields information about a malware sample's
behaviour

F branch instructions are instrumented anyway
! little overhead to check if branch target is an API function

F need to know API function prototype to determine stack
layout for API call arguments
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GCC-XML4

There is one open-source C++ parser, the C++

front-end to GCC, which is currently able to deal with

the language in its entirety. The purpose of the

GCC-XML extension is to generate an XML description

of a C++ program from GCC's internal representation.

Since XML is easy to parse, other development tools will

be able to work with C++ programs without the burden

of a complicated C++ parser.

4http://www.gccxml.org
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GCC-XML Output

<Function id="_9749" name="GetProcAddress" returns="_9622"

context="_1" location="f2:2610" file="f2" line="2610"

extern="1" attributes="dllimport __stdcall__">

<Argument name="hModule" type="_8702" ... />

<Argument name="lpProcName" type="_6677" ... />

</Function>

<Typedef id="_6677" name="LPCSTR" type="_2864" ... />

<PointerType id="_2864" type="_294c" size="32" align="32"/>

<CvQualifiedType id="_294c" type="_294" const="1"/>

<Typedef id="_294" name="CHAR" type="_293" ... />

<FundamentalType id="_293" name="char" size="8" align="8"/>
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pygccxml5 to the rescue

Using pygccxml, we can use GCC-XML's output from python, to

F query functions by name

F inspect function prototypes

F determine the stack layout for function calls

Current implementation

F handles character strings and integers

F doesn't know anything about input and output parameters

F doesn't handle return values

F has basic support for handling stolen bytes

5http://www.language-binding.net/pygccxml/pygccxml.html
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Stolen Bytes

A method employed by some executable protectors. Basic idea:

F copy �rst N instructions of an API function to someplace else

F append a jump to the (N+1)th instruction

F modify import information to call the copied bytes

Basic countermeasures:

F if a branch target is not an exported symbol, use the one with
the next-smallest address

F disassemble instruction stream from there to the branch target

F keep track of and adjust for instructions that modify ESP
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Results - Criteria

F Unpacking Time

F OEP detection

F Does the unpacked code match the original code (.text
section)

F Could a valid and executable PE image be reconstructed
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Results - Synthetic Samples

F Generated by packing two di�erent binaries, Notepad (68kB)
und Wget (732kB)

F 30 di�erent runtime packers, using their default con�guration

F Only 20 packed Notepad samples would execute
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Results - Synthetic Samples

F hidden code could be extracted from almost all samples

F OEP detected correctly for 80% of all samples

F valid, executable PE images could be reconstructed for 58% of
all samples

F major obstacle to reconstruction: modi�cation of the original
code by a packer

F unpacking times from several minutes to an hour or more
! could be somewhat improved by logging less extensively
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Malware Samples

F 409 samples, collected over the course of one month by the
RWTH Aachen Honeynet

F 379 known malware (ClamAV), 239 runtime-packed(PEiD)

F 361 started execution and 343 executed modi�ed memory

F average run time was 7 minutes and 21 seconds

F Dr. Whatson started in 152 cases

F analysis indicates most of them could be unpacked correctly

F need to do more real-world testing
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Conclusion and Future Work

F plain unpacking seems to work fairly well, appears to be
largely immune to anti-debugging techniques

F API call tracing not heavily tested
F results so far look promising

! future work: track return values, output parameters

F major obstacle to reconstruction of valid PE images:
F executable protectors that modify the original code
F examples: stolen bytes, API call/entry point obfuscation

! need better, interactive tools?

F emulation speed is subpar, some compatibility issues
! use di�erent emulator/virtualizer?
! pro�le and optimise instrumentation code
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Additional Information

F My Thesis is available at
https://0x0badc0.de/PandorasBochs.pdf

F Git repository:
F mirrors the Bochs CVS repository
F Pandora's Bochs commited into a branch pandoras bochs
F moving target, used more as a version-controlled backup
F clone from git://0x0badc0.de/home/repo/git/bochs
F Gitweb at https://0x0badc0.de/gitweb?p=bochs/.git

F Slides will be made available at
http://www.redteam-pentesting.de
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Figure: Unpacking MEW11SE 1.2
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Figure: Unpacking Neolite 2.0
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Figure: Unpacking nPack 1.1300beta
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Figure: Unpacking PESpin 1.304
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Figure: Unpacking tELock 0.98
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Figure: Unpacking UPX 3.01
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