Botnets Behavioral Patterns in the Network

Garcia Sebastian

@eldracote

Hack.Lu 2014

CTU University, Czech Republic. UNICEN University, Argentina.

October 23, 2014

How are we detecting malware and botnets?

- Analyze the binary files.
- Analyze the network traffic.

Analyze the binary files

- Static, Dynamic or Hybrid.
- ► What the malware is capable of doing. Even if it is not doing it, or can't do it now.
- How dangerous it is, how complex.
- Which techniques it uses.
- Behavior inside the host.
- Intentions through the capabilities.

Analyze the network traffic

- Static or Behavioral.
- ▶ The actions and how they change.
 - ▶ The actions of all the binaries and modules together.
- ▶ Real-time updates of binaries and C&C servers.
- You can see the intentions through the actions.
- People doing dynamic analysis of the binary files to read the network data may have this information.

How are we analyzing the Network Traffic?

From 39 products/companies in the market

- ▶ 47% use fingerprints or rules.
- ▶ 34% use reputation (TA).
- ▶ 50% use Anomaly Detection.
- Only 2 Machine Learning algorithms where not AD.

What is working?

- ► Fingerprints are fast. Some are dynamic (e.g. Port Scan)
- Fingerprints have few False Positives and can be tuned for your network.
- Reputation if fast. Don't need to be tuned so much.
- ► Anomaly Detection... may work for very specific contexts.

What is not working?

- Fingerprints may take days to be created. Most attacks are not covered.
- Reputation is case-by-case. Maliciousness is hard to assess. A lot of effort, rules may be short lived.
- ► Anomaly Detection needs to build the normality of each network and adapt. Also, anomaly != maliciousness.

What is not working?

How long does an indicator sit in a Threat Intel feed?

Thanks Alex Pinto for the work and image! @alexcpsec.

www.mlsecproject.org

What is not working?

www.mlsecproject.org

How long does an indicator sit in a Threat Intel feed?

Thanks Alex Pinto for the work and image! @alexcpsec.

What is not working in Machine Learning?

- ► Lack of complete description of the algorithms.
- ► Lack of good, common and labeled datasets.
- Lack of good evaluations in real environments.
- Lack of good comparisons with other methods.
- Results highly depend on the dataset.
- Results highly depend on the metrics!
- Generalization is very difficult.
- "There is no algorithm that can perfectly detect all possible virus" (Fred Cohen, "Computer Viruses: Theory and Experiments", Computers and Security 6 (1987)).

A different approach: Network Behaviors

- Instead of anomalies, it tries to model how does a specific traffic behaves.
- Behavior means to analyze features over time.
- But what should be modeled?
 - Networks?
 - ► Hosts?
 - ► Servers?
 - ► A bot?
 - ► A botnet?

The complexity of network traffic is high

One bot, 57 days. 3 C&C protocols simultaneously (UDP, TCP and HTTP).

A long-term analysis show the decisions by the botmaster.

Our Proposal

To deal with the complexity by modeling and finding the behavior of individual connections.

But what is a connection?

All the packets related with certain type of action.

- ▶ The traffic to a DNS server (Not all the DNS traffic).
- ► The access to https://www.google.com .
- ► The SPAM sent to a specific SMTP server.
- ► The traffic to a C&C service (server and port).
- Etc.
- How can we capture these?

The need for aggregation: 4-tuples

If a bot connects every 1 day to a TCP C&C server...

- TCP-style connections.
 - ▶ One TCP connection is not enough.
- At least one NetFlow every day.
 - One NetFlow does not capture everything.
- ► To get all the connections we need to aggregate NetFlows.
- ► The aggregation structure is called 4-tuple. IT simply aggregates NetFlows by ignoring the source port:
 - Source IP, destination IP, destination port and protocol.

The creation of our state-based behavioral model

"All models are wrong, but some are useful."

- ► We analyze the behavior of each 4-tuple by extracting 3 features of each NetFlow.
- ► Each NetFlow is assigned a state based on these 3 features.

Features of each State. Keep it Simple.

Based on the analysis of long-term C&C channels...

- ► The size of the flow.
- ▶ The duration of the flow.
- ► The periodicity of the flow.

But how is periodicity defined?

Periodicity: 2nd Order Time Difference (TD)

This definition of periodicity allow us accurately analyze connections.

Behavioral Model: State Assignment to NetFlows

- ► The range of values for each feature is separated with 2 thresholds.
- ► Each NetFlow can be assigned one of 36 states.
- ▶ The special letter 0 is used for timeout.

	Small Size				Mediu	m Size		Big Size			
[Duration	Short	Medium	Long	Short	Medium	Long	Short	Medium	Long	
Not eno	ugh data	1	2	3	4	5	6	7	8	9	
Strongly	y periodic	а	b	С	d	е	f	g	h	i	
Weakly	periodic	Α	В	С	D	Е	F	G	Н	1	
Not peri	iodic	r	S	t	u	V	w	Х	у	z	

Behavioral Model: Chain of States

- Each 4-tuple receives multiple NetFlows.
- Each NetFlow is assigned one state (one letter).
- ► The 4-tuple has a chain of states that models its behavior over time.

For example the 4-tuple *147.32.84.165-212.117.171.138-65500-tcp* has the following chain of states:

96iIIiFfiiIiiIIIfiIIiiiiiiIfIiIiiiiIFiFIiwzwwzzIIiF0wzwzzfi0www wwzFzwFw0wwwfiiw0wwzwww0wwwwwfwww0wwzwiww wziwzwF0wwwfwwwwwwwwwzwzziifiiiiifdffwwz0wzwiidfF IFFdiDFIIwzziiiiwwzfwwweiFFwwFFwwFEfi0wwwwFf(...)

This connection is a TCP-based plain text botnet C&C channel.

Visualization of Behavior. 1st Botnet Connections

An example of a botnet with DNS/TCP access for DGA, HTTP, and HTTPS.

An example of an HTTP C&C channel.

Visualization of Behavior: 2nd Normal Connections

Normal HTTP and DNS.

Summary of the visualizations

- ▶ It is important to be able to see and verify the behaviors. Helps evaluating the detection later.
- No connection has a perfect frequency periodicity.
- The most periodic connections are automatic by the OS by retrying.
- More important than the states are the transitions between states.

What can be done whit this? Our Botnet Detection Model

- ▶ Based on the behaviors we created a detection model that:
 - Training phase: Trains a Markov Chain from the known and labeled behaviors.
 - 2. Testing phase: Generalizes the trained Markov Chains to detect similarities in unknown traffic.

Botnet Detection Model: Training Phase

- Created a labeled dataset.
 - ► Manually verified.
 - ▶ Botnet, Normal and Background labels.
 - ▶ 600GB of data.
 - ▶ 1,471 different unique labels (to, from).
 - Publicly available. (NetFlows all. Pcap only botnet)
- Use a Markov Chain to represent the probabilities of the transitions on each chain of states.

	а	b	С
а	0.1	0.6	0.3
b	0.25	0.05	0.7
С	0.7	0.3	0

Botnet Detection Model: Training Phase

The training model that we store includes:

- The Markov Chain Matrix
- ► The probability of generating the original chain of states that generated the matrix (POriginal).

Botnet Detection Model: Testing phase

Use the stored and trained models to detect similar behavior.

- ► For each 4-tuple in the unknown traffic:
 - ▶ Generate the chain of states of the unknown 4-tuple (letters).
 - For each previously trained model:
 - Compute the probability that the current model generated the unknown chain of states (PUnknown).
 - ► Compute the difference between POriginal and PUnknown.
 - If this difference is larger than a certain threshold, discard the model.
 - If not, retain this model as a candidate.
 - Select the candidate model with the smallest difference.
 - Assign the labels to the NetFlows.

Botnet Detection Model: Results

- ▶ We ran the algorithm in the labeled dataset (separated in training/cross-validation/testing).
- You need labeled data to obtain metrics.
- Results so far:
 - Average F-Measure: 78% (Best 93%)
 - Average FPR: 10% (Best 0.2%)
- Which were the errors? Some experiments did not have aa good trained model that represented the testing botnet traffic.

Comparison with other methods

- ► The detection model was compared with other 3 detection methods.
- Using the same dataset and error metrics.
- ► CAMNEP system, BotHunter system and BClus system.

Example Results

Name	tTP	tTN	tFP	tFN	TPR	TNR	FPR	FNR	Prec	Acc	ErrR	FM1
CCD	87.6	254	14	0	1	0.94	0.05	0	0.86	0.96	0.03	0.92
AllPo	65.5	0	69	0	1	0	1	0	0.4	0.4	0.5	0.65
BClus	30.2	41.3	27.6	35.3	0.4	0.5	0.4	0.5	0.5	0.5	0.4	0.48
Fs1	7.8	66.4	2.5	57.5	0.1	0.9	<.0	8.0	0.7	0.5	0.4	0.20
Fs1.5	6.3	67.2	1.7	59.1	<	0.9	<	0.9	0.7	0.5	0.4	0.17
Fd1	6.8	54.2	14.6	58.6	0.1	0.7	0.2	8.0	0.3	0.4	0.5	0.15
Fs2	4	67.6	1.3	61.4	<	0.9	<	0.9	0.7	0.5	0.4	0.11
Fd1.5	4.6	57.5	11.4	60.8	<	0.8	0.1	0.9	0.2	0.4	0.5	0.11
Fd2	2.2	59.8	9.1	63.2	<	0.8	0.1	0.9	0.1	0.4	0.5	0.05
Mi1	2.3	52.3	16.6	63.1	<	0.7	0.2	0.9	0.	0.4	0.5	0.05
X1	1.7	68.6	0.3	63.6	<	0.9	<	0.9	8.0	0.5	0.4	0.05
X1.5	1.5	68.6	0.3	63.9	<	0.9	<	0.9	8.0	0.5	0.4	0.04
BH	1.59	73.8	0.18	109	0.01	0.9	<	0.9	0.8	0.4	0.5	0.02
Mi1.5	1	56.9	12	64.4	<	0.8	0.1	0.9	<	0.4	0.5	0.02
Mi2	0.6	63.1	5.8	64.8	<	0.9	<	0.9	<	0.4	0.5	0.01
Le1	0.2	68.1	0.8	65.2	<	0.9	0.01	0.9	0.2	0.5	0.4	0.007
Ko1	0.1	68.7	0.1	65.3	<	0.9	<	0.9	0.4	0.5	0.4	0.004
Ko1.5	0.08	68.9	0.02	65.3	<	1	0	0.9	0.7	0.5	0.4	0.002
CA1	0.005	68.7	0.2	65.4	0	0.9	<	1	<	0.5	0.4	<0
T1.5	0.005	68.9	0	65.4	0	1	0	1	1	0.5	0.4	<0
T1	0.005	68.9	0	65.4	0	1	0	1	1	0.5	0.4	<0

Future Work: Behavioral IPS

- Use verified behavioral models in real time traffic.
- The actions are taken depending on the matching model and independently of the IP addresses, ports, domains or payloads:
 - ▶ Block C&C behaviors.
 - Block DoS attacks.
 - Block certain type of SPAM.
 - Block malicious P2P, while allowing normal P2P.
 - ▶ Block brute-force attacks while allowing normal logins.
- Behavioral models can be as specific as a signature. They can generalize to similar behaviors.

Conclusions

- How many flows do we need?
- Attacking with one flow?
- Future research
 - The analysis of several behaviors together may improve the detection of the IP.
 - Verify the classification of more labels.
- Behavioral models captures the dynamism.
- Behavior is key to long-run detection.

Thanks!

Thanks for staying!
@eldracote
eldraco@gmail.com
Malware Capture Facility Project: http://mcfp.weebly.com/

Be careful with the metrics...

- Metrics highly depend on the dataset and network.
- ▶ The utility of a model depends on how it is used.
- Metrics highly depend on how errors are considered. We use time windows, IP addresses and an aging function.
- ► We consider a TP when an IP address is correctly detected as botnet at least once in the time window.
- ► We consider a TN when an IP address is correctly detected as Normal during the whole time window.

Resources

 An empirical comparison of botnet detection methods. S. García, M. Grill, J. Stiborek, A. Zunino. Computers & Security Journal. Elsevier.