
Offline bruteforce attack on
WiFi Protected Setup

Dominique Bongard
Founder

0xcite, Switzerland

@reversity

 Introduction to WPS

 WPS PIN External Registrar Protocol

 Online Bruteforce attack on WPS PIN

 Offline Bruteforce attack on WPS PIN

 Vendor reponses

 Bonus

WARNING
This presentation may
contain illustrations by

Ange Albertini

 Wi-Fi Protected Setup (WPS) or Wi-Fi Simple Configuration (WSC)

 „A specification for easy, secure setup and introduction of devices into

WPA2-enabled 802.11 networks"

 Offers several methods for In-Band or Out-of-Band device setup

 Severely broken protocol!

 The technical specification can be purchased online for $99

 Some old versions can be found floating on the net

 USB Flash Drive (Deprecated)

 Ethernet (Deprecated)

 Static PIN on device label

 Display

 NFC Token

 Push Button

 Keypad

 To register with WPS you don‘t need to know
the PIN and press the WPS button

 You need to know the PIN OR press the WPS
button

 Enrollee : A device seeking to join a WLAN domain

 Registrar : An entity with the authority to issue WLAN credentials

 External Registrar : A registrar that is separate from the AP

 AP : An infrastructure-mode 802.11 Access Point

 Headless Device : A device without a screen or display

 An Enrollee can be a station or an AP

 A Registrar can be a station (external registrar) or an AP

 A Registrar doesn‘t need to be in the WiFi network

 A WiFi network can have more than one WPS Registrar

 In the most common case, the Registrar is a station outside

the WiFi network and the Enrollee is the AP, not the other way

around.

WPS PIN External
Registrar Protocol

The recommended length for a manually entered device password is

an 8-digit numeric PIN. This length does not provide a large amount

of entropy for strong mutual authentication, but the design of the

Registration Protocol protects against dictionary attacks on PINs if a

fresh PIN or a rekeying key is used each time the Registration

Protocol is run.

If the Registrar runs the Protocol multiple times using the same PIN

an attacker will be able to discover the PIN through brute force. To

address this vulnerability, if a PIN authentication error occurs, the

Registrar SHALL warn the user and SHALL NOT automatically

reuse the PIN.

The [sticker] PIN contains approximately 23 bits of entropy… It is

susceptible to active attack.

PSK1 PSK2

E -> R M1 N1 || Description || PKE

 N1 is a 128-bit random nonce generated by the Enrollee

 PKE is the DH public key of the Enrollee

 Upon reception of M1 the Registrar generates PKR and N2

 The Registrar can then compute the DHKey:

DHKey = SHA-256 (zeropad(gABmod p, 192))

 And calculate the Key Derivation Key :

KDK = HMAC-SHA-256DHKey (N1 || EnrolleeMAC || N2)

 Finally AuthKey, KeyWrapKey, and EMSK are derived:

AuthKey || KeyWrapKey || EMSK =

kdf(KDK, “Wi-Fi Easy and Secure Key Derivation”, 640)

 AuthKey : used to authenticate the Registration Protocol

messages (256 bits)

 KeyWrapKey : used to encrypt secret nonces and ConfigData

(128 bits)

 EMSK : Extended Master Session Key that is used to derive

additional keys (256 bits)

R -> E M2 N1 || N2 || Desc. || PKR || Auth

 N2 is a 128-bit random nonce generated by the Registrar

 PKR is the DH public key of the Registrar

 Auth = HMACAuthKey(M1 || M2)

E -> R M3 E-Hash1 || E-Hash2

 E-Hash1 = HMACAuthKey(E-S1 || PSK1 || PKE || PKR)

 E-Hash2 = HMACAuthKey(E-S2 || PSK2 || PKE || PKR)

 PSK1 is made of the first 4 digits of the PIN

 PSK2 is made of the last 4 digits of the PIN

 E-S1 and E-S2 are two 128 bit random nonces

R -> E M4
R-Hash1 || R-Hash2 ||

EKwk(R-S1)

 R-Hash1 = HMACAuthKey(R-S1 || PSK1 || PKE || PKR)

 R-Hash2 = HMACAuthKey(R-S2 || PSK2 || PKE || PKR)

 R-S1 and R-S2 are two 128 bit random nonces

 The Enrollee decrypts R-S1

 The Enrollee verifies :

HMACAuthKey(R-S1 || PSK1 || PKE || PKR) = R-Hash1

?

E -> R M5 Ekwk(E-S1)

 The Enrollee opens its first commitment

 The Registrar decrypts E-S1

 The Registrar verifies :

HMACAuthKey(E-S1 || PSK1 || PKE || PKR) = E-Hash1

?

R -> E M6 EKwk(R-S2)

 The registrar opens its second commitment

HMACAuthKey(R-S2 || PSK2 || PKE || PKR) = E-Hash2 ?

E -> R M7 Ekwk(E-S2 || Credentials)

 The Enrollee opens its second commitment and also sends

the network credentials

WPS AP as Registrar
attack

 Why is the AP the Registrar resp. the Station the

Enrollee and not the other way around?

 The WiFi Alliance probably found out that the

protocol would otherwise be totally insecure in the

scenario with Headless devices

E -> R M1 N1 || Description || PKE

 N1 is a 128-bit random nonce generated by the Enrollee

 PKE is the DH public key of the Enrollee

R -> E M2 N1 || N2 || Desc. || PKR || Auth

 N2 is a 128-bit random nonce generated by the Registrar

 PKR is the DH public key of the Registrar

 Auth = HMACAuthKey(M1 || M2)

E -> R M3 E-Hash1 || E-Hash2

 E-Hash1 = Random

 E-Hash2 = Random

R -> E M4
R-Hash1 || R-Hash2 ||

EKwk(R-S1)

 The Enrollee can decrypt R-S1 and then brute force PSK1

with R-Hash1

 The Enrollee then restarts the protocol knowing PSK1

E -> R M5 Ekwk(E-S1)

 In the second run of the protocol, the Enrollee can send valid

values since it knows PSK1

R -> E M6 EKwk(R-S2)

 The Enrollee can decrypt R-S2 and then brute force PSK2

with R-Hash2

 The Enrollee then restarts the protocol one last time

knowing both PSK1 and PSK2

WPS online
bruteforce attack

 Looks OK as long as there is only one try per PIN

 Proof of possession allows detection of rogue APs and

stations

 The DH key exchange protects against eavesdropping

 Attack published in 2011 by Stefan Viehböck

 The idea is to bruteforce PSK1 and then PSK2

 Takes at most 11‘000 trials for sticker PIN

 At most 20‘000 trials for user selected PIN

 Finds the PIN in a few hours (depends on AP)

 Most AP implemented no security against BF

 Implemented in tools like Reaver and Bully

 Changes in the specification

2.0.2 Public release version

- Change Headless Devices section to mandate
implementation of strong mitigation against a

brute force attack on the AP that uses a static PIN.

 Some devices have a WPS lockout delay

 This only slows down the attack a bit

 Other lock WPS until the next reboot

 AP reboot scripts (mdk3, ReVdK3)

 EAPOL-Start flood attack

 Deauth DDoS

 The initial use case seems to be random PIN on display with one try

 The specification contains contradictory statements about PIN reuse

 The protocol looks secure enough if PINs are not reused

Conclusion:

 Headless devices with static PINs were probably a last minute addition to
the specification

WPS offline
bruteforce attack

E -> R M1 N1 || Description || PKE

 N1 is a 128-bit random nonce generated by the Enrollee

 PKE is the DH public key of the Enrollee

E -> R M3 E-Hash1 || E-Hash2

 E-Hash1 = HMACAuthKey(E-S1 || PSK1 || PKE || PKR)

 E-Hash2 = HMACAuthKey(E-S2 || PSK2 || PKE || PKR)

 PSK1 is made of the first 4 digits of the PIN

 PSK2 is made of the last 4 digits of the PIN

 If we can find E-S1 and E-S2, we can the brute force
PSK1 and PSK2 offline!

 Usually with pseudo-random generators (PRNG)

 Often insecure PRNG

 No or low entropy

 Small state (32 bits)

 Can the PRNG state be recovered ?

reg_proto_create_m1(RegData *regInfo, BufferObj *msg)

{

uint32 ret = WPS_SUCCESS;

uint8 message;

DevInfo *enrollee = regInfo->enrollee;

/* First generate/gather all the required data. */

message = WPS_ID_MESSAGE_M1;

/* Enrollee nonce */

/*

* Hacking, do not generate new random enrollee nonce

* in case of we have prebuild enrollee nonce.

*/

if (regInfo->e_lastMsgSent == MNONE) {

RAND_bytes(regInfo->enrolleeNonce, SIZE_128_BITS);

}

/* It should not generate new key pair if we have prebuild enrollee nonce */

if (!enrollee->DHSecret) {

ret = reg_proto_generate_dhkeypair(&enrollee->DHSecret);

if (ret != WPS_SUCCESS) {

return ret;

}

}

...

#if (defined(__ECOS) || defined(TARGETOS_nucleus) || defined(TARGETOS_symbian))

void generic_random(uint8 * random, int len)

{

int tlen = len;

while (tlen--) {

*random = (uint8)rand();

*random++;

}

return;

}

#endif

int rand_r(unsigned int *seed) {

unsigned int s=*seed;

unsigned int uret;

s = (s * 1103515245) + 12345; // permutate seed

uret = s & 0xffe00000; // Only use top 11 bits

s = (s * 1103515245) + 12345; // permutate seed

uret += (s & 0xfffc0000) >> 11; // Only use top 14 bits

s = (s * 1103515245) + 12345; // permutate seed

uret += (s & 0xfe000000) >> (11+14); // Only use top 7 bits

retval = (int)(uret & RAND_MAX);

*seed = s;

return retval;

}

 Linear Congruential Generator

 32 bits state

 No external entropy

 E-S1 and E-S2 generated right after N1

 Optimization: 7 bits of the seed can be deduced

from the last output byte

 Do the WPS protocol up to message M3

 Get the Nonce from M1

 Bruteforce the state of the PRNG

 Compute E-S1 and E-S2 from the state

 Bruteforce PSK1 / PSK2 from E-Hash1 / E-Hash2

 Do the full WPS protocol to get the credentials

 32 bit Linear Feedback Shift Register (LFSR)

 Polynomial = 0x80000057

 Trivial to recover the LFSR state from the nonce

 E-S1 and E-S2 are never generated

 E-S1 = E-S2 = 0x0

 Some AP have the same state at each boot

 Make a list of common states after reboot

 Attack the AP right after boot

 As shown, there are many ways to force a reboot

 Looks okay

 Uses /dev/random

 Used in Atheros SDK

 But you never know

 Several papers attack the entropy of the linux PRNG
in embedded systems

 Marvell

 Realtek

 Intel

 Qualcomm

 ...

 It‘s complicated

 Many of the implementations are the reference code

for the chipset

 Only the GUI is reskinned

 Therefore many brands are affected

 Many vendors use different chipset

Even for the same model number

Vendor responses

 Tried to find a security incident contact

 Tried to contact them on Twitter

 Tried to contact them through their website

Dominique Bongard discovered that Broadcom chips are

affected. Their random number generators apparently are so

easy to guess that an attacker can get your Wi-Fi access point to

give up its PIN code in less than a second.

This is the first we have heard of this. We’ll connect with your

security team.

Karen

Thanks for checking. This is not a chip issue. The issue you

have identified can affect any Wi-Fi product.

Vulnerabilities can depend on the Wi-Fi standard that is

chosen for security. This may depend on the age of the

product.

Best regards,

Jennifer B.| Senior Manager, Corporate Communications

We do use the Broadcom chipset in some of our offerings, and

we're reaching out to Broadcom as we speak, to find out if any of

the ones we use are affected by this issue.

[...] Also, for your information - Cisco has a very limited number

of wireless products with support for WPS. Most of them are Small

and Medium business products, while others are sold to Service

Providers (not to end users) to be used as cable modem CPEs.

And some of those CPEs have wireless capabilities, and some

support WPS. We'll investigate them all, make our results public

by following our security policy.

 Tried to contact them via their website

Thanks, Dominique. This is very helpful.

In the future, I encourage you to report any Wi-Fi-related vulnerabilities

directly to us. Wi-Fi Alliance reviews all submitted reports of security

vulnerabilities affecting Wi-Fi CERTIFIED programs. You can submit

vulnerabilities to secure@wi-fi.org or at https://www.wi-fi.org/secure .

Thanks again.

Regards,

Kevin R. | Director of Program Marketing | Wi-Fi Alliance

WPS static pin
generation attack

PIN values should be randomly generated, and they
SHALL NOT be derivable from any information that can
be obtained by an eavesdropper or active attacker. The
device’s serial number and MAC address, for example,
are easily eavesdropped by an attacker on the in-band
channel.

Arris http://packetstormsecurity.com/files/123631/ARRIS-DG860A-WPS-PIN-Generator.html

Belkin http://ednolo.alumnos.upv.es/?p=1295

Other http://www.hackforums.net/printthread.php?tid=4146055

… * Tenda, Sitecom, Linksys, FTE, Vodafone, ZTE, Zyxel

http://www.crack-wifi.com/forum/topic-8793-wpspin-

generateur-pin-wps-par-defaut-routeurs-huawei-belkin.html

http://packetstormsecurity.com/files/123631/ARRIS-DG860A-WPS-PIN-Generator.html
http://ednolo.alumnos.upv.es/?p=1295
http://www.hackforums.net/printthread.php?tid=4146055
http://www.crack-wifi.com/forum/topic-8793-wpspin-generateur-pin-wps-par-defaut-routeurs-huawei-belkin.html

Conclusion

 Disable WPS now !

 Reverse engineers: Check other AP for bad PRNG

 Cryptographers: Check if good PRNG are okay

