
Ange Albertini - Hack.Lu 2015

Trusting files
(and their formats)

Ange Albertini
reverse engineering &
visual documentation
@angealbertini
ange@corkami.com
http://www.corkami.com

Welcome to my talk!

https://twitter.com/angealbertini
https://twitter.com/angealbertini
mailto:ange@corkami.com
mailto:ange@corkami.com
http://www.corkami.com
http://www.corkami.com

My resume is a PDF. What could go wrong ? ;)

;)

For some reason, many people are not motivated to open any files coming from me,
so I made this to reward them ;)

"standard file" ;)

Yes, I write files by hand...
[...and I open them in hex editors]

%PDF-1.

1 0 obj
<< /Kids [<<
 /Parent 1 0 R
 /Resources <<>>
 /Contents 2 0 R
 >>]
>>

2 0 obj
<<>>
stream
BT
 /F1 110 Tf
 10 400 Td
 (Hello World!) Tj
ET
endstream
endobj

trailer <<
 /Root << /Pages 1 0 R >>
>>

...like this one

truncated signature

missing parent /Type
/Kids should be indirect
missing /Font
missing kid /Type
missing /Count

missing endobj

missing /Length

missing xref

/Root should be indirect, missing /Size, missing root /Type
missing startxref, %%EOF

%PDF-1.

1 0 obj
<< /Kids [<<
 /Parent 1 0 R
 /Resources <<>>
 /Contents 2 0 R
 >>]
>>

2 0 obj
<<>>
stream
BT
 /F1 110 Tf
 10 400 Td
 (Hello World!) Tj
ET
endstream
endobj

trailer <<
 /Root << /Pages 1 0 R >>
>>

It’s not
standard...

INVALID?

...but it works
exactly as planned!
(without any reported error)

ACCEPTED!

File formats are
my playground

(and I'm beyond recovery already)

Files or file formats?
It's not a real question.

Fichier sans format n'est que ruine de l'âme ;)

To share information, you need to use a common standard.

Forms & file formats
moving to a different country == making a PDF/SNES polyglot

same problems: all similar, but all different

only difference: forms are rarely required to evolve

Trusting files comes with
trusting their format.

Knowing that the specs will
be useful and reliable.

Retrospective

1

3DES
AESK

AESK

JPG

JAR
(ZIP + CLASS)

PDF
FLV

PNG

2

I gave an entertaining presentation with many funky binary creations.
Check it if you want more binary magic tricks ;)

I wrote a technical paper classifying all my file format abuses:
So far, I was (only) playing with file formats.

Why?
Why are all these abuses possible?
What could we (try to) do about it?

The big question...

Now, I'm (also) in contact with people analyzing or designing file formats.
I presented at a DigiPres con about Infosec: today, it's the other way around.

There are different kinds of expectations for files.

The end-user just wants to view external files, store his own information and re-use it.

The developer relies on the specifications to add support in his library.

The archivist wants to make sure that his data will be re-usable much later.

The digital investigator looks for clues in a suspect's system.

An attacker tries to craft dangerous files,

while a defender wants to prevent it from happening.

Common points

We're blind believers:
● believing that we'll be able to reuse our

information
● believing that in any case, we can just rely

on the specs to help us, like a religious book.

"the cult of the (useless) specs" ;)

It's not just an Infosec problem.

Bad specs make it harder for
devs, DFIR, digipres, defenders...

Theory: check official specs

Reality:
check unofficial specs & blog posts

analyse/reverse libraries
gather ITW (clean & malware) samples

Does it ring a bell ?

Bad specs are why attackers
and DFIR devs can make so

much money ;)

It's not specs reading anymore, it's reversing.

Not all abuse of file formats
turn into exploits.

But why should we only fix
what's pwning you?

"Short term fix" anyone?

We just care about code,
and "cyber attacks".

Files tricks go under the radar.

Usually… a few exceptions...

Tavis Ormandy's ZIP/DLL polyglot exploit for Kaspersky

Tavis Ormandy's "HTML in certificate" exploit for Avast

J00ru's font vulnerability (Recon 2015)

If we don't understand
how it really works,

we can't: parse it, preserve it,
tell if corrupted or malicious.

Crafting a file format

File format is not just "data structure"

Protobuf / XML doesn't solve everything.
They're just the high-level layer.

Data structure need to be logical and make
sense from a dev perspective.
So at least, use a magic number/signature,
and enforce version numbers, sizes... ;)

Failure is still possible

Office file format is a … filesystem!
You can defragment it!
And it has different kinds of FAT ;)

https://www.reddit.com/r/IAmA/comments/3ilzey/were_a_bunch_of_developers_from_ibm_ask_us/?sort=top

A file format is not just an "algorithm"

Your algorithm is great, but the file format will
be the interface between your algorithm and all
its users and other applications.

finish your specs! double-check them!
provide test cases!

A file format is a map

Every street should follow the same rules,
Otherwise you must expect many violations.
Wherever there is a 'surprise', bad things
happen.

Consistency ^ (Compatibility || Schizophrenia)

"PSD makes inconsistency an art form"

https://code.google.com/p/xee/source/browse/XeePhotoshopLoader.m?r=f16763d221dfca6253983824b470adf553a19e06#108

// At this point, I'd like to take a moment to speak to you about the Adobe PSD format.
// insult to other bad formats, such as PCX or JPEG. No, PSD is an abysmal format. Having
// PSD is not a good format. PSD is not even a bad format. Calling it such would be an
// worked on this code for several weeks now, my hate for PSD has grown to a raging fire
// that burns with the fierce passion of a million suns.
// If there are two different ways of doing something, PSD will do both, in different
// places. It will then make up three more ways no sane human would think of, and do those
// too. PSD makes inconsistency an art form. Why, for instance, did it suddenly decide
// that *these* particular chunks should be aligned to four bytes, and that this alignment
// should *not* be included in the size? Other chunks in other places are either unaligned,
// or aligned with the alignment included in the size. Here, though, it is not included.
// Either one of these three behaviours would be fine. A sane format would pick one. PSD,
// of course, uses all three, and more.
// Trying to get data out of a PSD file is like trying to find something in the attic of
// your eccentric old uncle who died in a freak freshwater shark attack on his 58th
// birthday. That last detail may not be important for the purposes of the simile, but
// at this point I am spending a lot of time imagining amusing fates for the people
// responsible for this Rube Goldberg of a file format.
// Earlier, I tried to get a hold of the latest specs for the PSD file format. To do this,
// I had to apply to them for permission to apply to them to have them consider sending
// me this sacred tome. This would have involved faxing them a copy of some document or
// other, probably signed in blood. I can only imagine that they make this process so
// difficult because they are intensely ashamed of having created this abomination. I
// was naturally not gullible enough to go through with this procedure, but if I had done
// so, I would have printed out every single page of the spec, and set them all on fire.
// Were it within my power, I would gather every single copy of those specs, and launch
// them on a spaceship directly into the sun.
//
// PSD is not my favourite file format.

Not just specs

A default open implementation?
with test cases for the code, and free-licenced
examples cases provided.
Too many 'features from the specs' are never
seen in the wild.

Life of a file format

1. define a format (if possible)
2. implement it in your software
3. end :(

if you're lucky:
your software becomes standard
along with its file format. That's all.

Becoming a de-facto standard
doesn't require anything:

it's your niche market.
No official requirements.
Just business directions.

no "long term plan"

You end up with a standard
that was never properly

designed or documented in
the first place.

Have fun preserving it or making it secure!

I wrote a simple "Hello World" PDF,
that works on every reader.
Yet, it's not 100% standard (only 99%)
That's a bad start :(

Thinking about bundling?
Hint: don't.

int bundle(trust){return trust--;}

Evolution of a format
(divergence)

Evolution

1. Tool X creates bogus file
2. StandardTool adapts silently to support them
3. Now StandardTool goes beyond the specs

Specs are now even more useless.

Ex: ColorTrac scanners, PDF readers

Implementations slowly
diverge from the specs

⇒ the specs become
theoretical and

useless in the wild.
Yet nothing exists to replace them.

Once it's a standard,
it's too late to fix it.

Before it's a standard,
no one really cares.
And too few people care anyway ;)

JPEG 1/2

JPEG (1992) is not a file format!
Open source library: LibJPEG → that's great!
LibJPEG goes beyond the specs:
- recovers standard types of App0 chunks

- including the one specific to Adobe
- unnecessary functions (headless JPEG (!))

- "let's add this in case" ⇔ design by committee ?

A JPG without a 'required' APPx segment

JPEG 2/2

JPEG is ‘de facto’ libJPEG-turbo v6b.
Explore corner-cases, and then you fail Adobe
or Safari:
⇒ their test cases are not big enough

Major problems (so many!)

specs really come last: absent, or TBD
incomplete specs: BPG, ZIP, PDF
incoherent specs: PDF
non-free specs.

Recovering broken files
AKA "hidden mode"

Take a fully working PDF.

Change one byte at the wrong place (in the XREF) ⇒ OMG it's corrupted!

But if you remove its XREF entirely, it now miraculously works,
with just a (misleading) dialog on closing, that actually means:
"we found some bugs, do you want to save as a valid but bloated file?"

Standard programs
typically embed a

(silent) recovery mode.

Nightmare for devs/defenders

These modes try their best
to recover "broken" files.

Far beyond the specs.

To improve security
and format reliability:

turn auto-recovery into
dialog box warnings?

or reject these files and log the error?
That would make vendors act.

"This file is not correct,
please contact your vendor"...

"helping" the end-user
by triggering no warning?

(even temporarily) OK

What about identifying bad
practices to make them stop

eventually?

Forcibly deprecate?

Like crypto? Sounds good, but...
Not going to happen:
Broken crypto leads to fast and mass pwnage.
Broken file formats mostly just lead to
headache - no incentive to avoid that.
Not enough "Android master key" bugs yet.

"one" standard ?

I made extremely custom PDFs for each reader.

These "extreme" PDFs fail on any other reader.

Consequence

We have 6 PDF reader 'standards' in practice:
these may be extreme examples, but
OTOH "Hello World" is not so complex

"Nothing to fix"
"Specs are subject to interpretation"

PDF Schizophrenia?

- Sumatra / Chrome-1 / Others
- Chrome-2 / Others
- Safari / Others
- Poppler / Others
It's not even funny anymore…

⇒ any unclear area may lead to schizophrenia

PDF = portable?

Most readers are okay to read 'standard' docs.
any advanced functions? Adobe Reader
(printing, forms, JavaScript, 3D).
Also, no more Linux version.

PDF, a clean standard?

Non-free specs.
Only the "standard" 1.7 doc is free.
No free examples.

Incomplete + missing specs
no shareable samples

Non-free specs?
No free sample-set?

And you wish to stay
a "standard" in 2015?

PDF for archiving?

PDF/A already has 8 sub-standards
Adobe Preflight is not very updated

⇒ Preservation is not a business model,
nor a legal requirement of any kind.

How long before "support is discontinued"?

PDF 2.0

No new security stuff, specs are now 170 CHF.
New printing features, new insecure features:
embedding files anyone?

http://www.pdfa.org/2015/10/whats-unique-about-pdf/

I'm not so sure about it - after all, we're killing Flash for security reasons.

http://www.pdfa.org/2015/10/whats-unique-about-pdf/
http://www.pdfa.org/2015/10/whats-unique-about-pdf/

A (tiny) ray of hope

VeraPDF.org:
open source PDF/A validator.

Preservation

portable compiler + toolchain
portable source
no OS dependency at all ?

preservation via closed-source software?
⇒ "emulation as a service" has a great future :(

ZIP archives already made for multiple floppy support.

1

2

3

Because it's awkward
and suboptimal for modern standards,
there are now 3 ways ITW to parse ZIP
(can be abused
like in the Android Master Key bug)

ZIP (1989) is still updated.
ZIP added AES, LZMA, 64 bits, Unicode.
But still this awkward obsolete structure?

Why not just reorder structures, enforcing
values, and slowly preventing abuses ?
Not re-inventing the format, just forking it.

Do we still need floppy support?

Seriously

Do we still really need Tape Archives?
Floppy-oriented, backward-parsed ZIP?
Any generated PDF that doesn't have its magic
at offset 0?

FTR:
OpenSSL still supports WinCE, BeOS….
Windows bitmap fonts are stored as 16 bits NE executables (copyright 1989).

Pure digital preservation

New documents are born digital:
the problem is shifted:
the 'master' copy already depends on:
source+compiler+toolchain+(OS+CPU).

A PDF with a JPEG-compressed script

JPEG, but not an image?

It's not against the specs,
but it was removed without any warning nor
tracking.
⇒ breaks backward compatibility
If your document was using it, now it's broken.
If this document is born digital, you lost your
source document.

Backward compatibility

Everywhere.
In case, you never know.
The customer is always right.
Perhaps except for security things ;)

Our kids will probably ask us one day
why we kept all these things for so long...

Windows compatibility

Windows is becoming progressively (but
silently) more strict for the PE format, slowly
killing several packers.

Have you heard anyone complaining?

(the official PE doc still totally sucks though)

breaking backward compatibility

It's ok if it's for valid reasons,
but keep track of changes, enforce version
numbers, and update the specs accordingly at
the same time!

Nowadays,
a file format is an evolving entity for security reasons,

not something sacred written in stone

Multiple formats is not the problem:
we have different needs.

But documentation never reflect
reality in any case.

There are many benefits to
know definitively what a valid

file is or isn't.

Cleaning up

Terse Executable is a cleaned-up version of the
Portable Executable
(but for UEFI, not to replace it).

Only example of forking that makes sense?
We just stack features...

There's no standard for
file format specifications
different style of writing, may be incomplete

unclear, non free...

Something I tried

PE.corkami.com: my own collection of hand-made executables and "documentation" (completely free).

http://pe.corkami.com
http://pe.corkami.com

Some of these failed a lot of software...

Consequence?

● 'corkami-proof' software
● raises the bar for everyone
● become a hub of knowledge

○ "I can't share the sample", but from the knowledge,
my own file will be shared
⇒ even useful for the original contact

Conclusion

We're -ed

We probably have to witness
the burning of

a digital "Library of Alexandria"
before we change anything.

(because money)

No matter the kind of format,
we can't trust files:
"specifications" ?

more like gentle introductions!

Or maybe something like
religious texts (with philosophical suggestions)

not accurate descriptions of reality.

Many more file abuses will come!
It doesn't get you any bug bounty,

but plenty of new classes
of abuse to discover:

compression, network, cryptography,
file systems...

Rules of thumb

● abuse your own format
○ double-check your specs -- with a twisted mind!

● open-source, unit-tested library
● consistency, technical common sense
● stop stacking features!

How you can help?

test-case binaries
● share your testing suite
● fuzzing results (seen from code coverage)

⇒ raises the bar for all industries

A format evolves

● deprecate!
● enforce version numbers
● make it public

we can set open ultimatum for crypto,
we should do the same for bad files.

Ack
Phil Paul Arindam Jacob Alex
Christophe Travis Tavis
Sergey Kurt Gabor Miki Gyn
Mat Bart Max
…

Thank you!

Corkami: 10 years!
time to evolve !

More PoCs, posters, book(s)...
+ some side projects

⇒ no more [personal] presentations for now

FAQ: "do you have any
recommended PDF reader"
Only Adobe Reader handles complex
documents and functionalities.
Other are more or less equivalent.

Not a very satisfying answer, I know ;)

PDFs:
myths vs facts

corkami.com
@angealbertini

Hail to the king, baby!

http://www.corkami.com
http://www.corkami.com
https://twitter.com/angealbertini
https://twitter.com/angealbertini

