HACK.LU - ¥ @FREDERICJACOBS

This is an annotated version of my hack.lu (October 2015) slides. This presentation is targeted at hackers and security researchers.
This is NOT a presentation for cryptographers.

Metadata
Theme Color: 5959ff

@FREDERICJACOBS

I’m Frederic Jacobs. Mainly two things are keeping me busy, academia and FOSS. | have done work with Elliptic Curve Cryptography and Lattices. More relevant to this
talk, I’'ve been leading the development of Signal (an open-source application that lets you do end-to-end encrypted phone calls and texting).

A
TALK ABOUT PROTOCOLS,

NOT PRIMITIVES

This presentation is about messaging protocols. We are not interested in primitives. In a lot of cases you can swap a primitive for an other but always check with a
cryptographer before doing so since in some use cases primitives have different properties than others. For instance, it is perfectly fine to use a form of concatenation for
authentication with SHA-3 while using SHA-1 or MD-5 for the same case is going to make you vulnerable to length extension attacks.

DEFINING THE CONTEXT FOR

The title of this presentation is messaging, let’s set the context for messaging on the Internet.

ARPANET |

Dezember 1969

DOES NOT SHOW ARPA'S EXPERIMENTAL
ECTIONS)

Marz 1972 e JUI 1977

1974 Internet Various forms of one-to-one electronic messaging were used in the 1960s. People communicated with one another using systems developed for specific
mainframe computers. As more computers were interconnected, especially in the US Government's ARPANET, standards were developed to allow users of different
systems to email one another. SMTP grew out of these standards developed during the 1970s.

RICRFC 196 - Mail Box Protoc X

) https://tools.ietf.org/html/rfc196 \
I ——

[Docs] [txt|pdf]

Obsoleted by: 221

NETWORK WORKING GROUP Richard W. Watson
Request for Comments #196 SRI-ARC
NIC 7141 July 20, 1971

Categories: A.5, D.7
Obsoletes: none
Updates: none

A MAIL BOX PROTOCOL

The purpose of this protocol is to provide at each site a
standard mechanism to receive sequential files for immediate or
deferred printing or other uses. The files for deferred printing
would probably be stored on intermediate disk files, although
details of how a file is handled, stored, manipulated, or printed
at a site are not the concern of this protocol.

It is also assumed that there would be a program at the sending

The mail box protocol had most of the ideas that were later standardized as SMTP.
The document doesn’t mention security at all and the protocol is unauthenticated.

RICRFC 822 - STANDARD FOI' X

C' { https://tools.ietf.org/html/rfc822

Obsoleted by: 2822 INTERNET STANDARD
Updated by: 1148 v
RFC # 822

RICRFC 821 - Simple Mail Trar X

C' [https://tools.ietf.org/html/rfc821

Obsoletes: RFC #733 (NIC #41952)
[Docs] [txt]|pdf]

Obsoleted by: 2821

RFC 821

STANDARD FOR THE FORMAT OF SIMPLE MAIL TRANSFER PROTOCOL

ARPA INTERNET TEXT MESSAGES

Jonathan B. Postel

August 13, 1982 August 1982

Information Sciences Institute
University of Southern California

Revised b
evise ' 4676 Admiraltv Wawv

Dozens of proposed specifications later (including some like FTPMail based on FTP), SMTP comes to life, roughly 10 years later after the first mailbox protocols! Still not
a word about security in the spec and still not addressed lack of authentication (source-spoofable)

https://tools.ietf.org/html/rfc822 <== ARPA Format, legacy

Source IP + POP before SMTP https://en.wikipedia.org/wiki/POP_before_SMTP
https://tools.ietf.org/html/rfc821

POP arrives, adding attack surface. Plaintext password over unencrypted connection.

It’s interesting that in 1991, end-to-end email encryption appears. Before non-plaintext authentication and years before SSL.

In the same year, IMAP v3 is standardized - still plaintext auth and the spec uses a 5 letter passwords SESAME htips://tools.ietf.org/html/rfc1203)

Plaintext auth was addressed only in 1994. SSL appeared only in 1995 and was standardized to be applied to SMTP in 1997.

0.7
0.6
05
0.4
.\ w—— |Nbound
ws QUthound
0.3 Average
0.2
0.1
Graph: EFF
Data: Google
0
NO DO DB DD D DD ™ (. O DO D DO DD DD DD D A ©
g P 0P D P PP B F PP PP oo S S S S
o> o o 0 o 4 48 487 187 187 187 18 1O O O O a8 b 0 b b b b b 8 0 0 0 0 0 0 b b
& 7 7 P 17 X X W A XA X o O oY O o ¥ A A X WA XA X G WX
SN S M NS S SN S S S SN N S S S S S S UM NS S S NS S SN S S

Deployment of SMTPS is taking a lot of time. 16 years later, we only saw things moving faster. Thanks Snowden! From 30% to 75% ...

Updated numbers were published in a new paper at SIGCOMM htip://conferences2.sigcomm.org/imc/2015/papers/p27.pdf

Any compromise in key material at any point is a compromise in every message sent to that key or will be sent to that key.

With PGP, if authentication features are desired, document has to be digitally signed.

Messaging needs have changed over time. PGP is not adequate for our modern messaging needs. We want multi-device, group communications, being able to message
offline users ...

Interesting ideas came from the SSH world and session based protocols.

The OTR protocol is a session protocol for messaging.

PGP, S/MIME
OTR, SSL, SSH

Axolotl

Can’t we find something that combines best of both worlds? Our mobile communications are intrinsically asynchronous and yet we would enjoy some features from
session based protocols.

AXOLOTL

Meet the Axolotl Ratchet - Collaboration between Moxie Marlinspike & Trevor Perrin.

Designed for TextSecure and now increasingly deployed in messaging apps.

In most cases, when discussing with someone, you want the other party to be able to verify that messages you’re sending were sent by you and not someone else. But
you don’t want them to be able to prove cryptographically to someone else that you said something. That is deniability.

Unlikely to be useful in court though. Especially in group settings but nice to have for a protocol.

How is deniability implemented in OTR? https://whispersystems.org/blog/simplifying-otr-deniability/

° Alice ° Bob
< p33f dood < padb 00da
AO #7021 317b L

{3 8b4k f9af

Ratcheting enforces key rotation. This section is explained in an Open Whisper Systems blog post: https://whispersystems.org/blog/advanced-ratcheting/

Any key compromise will

compromise all future messages

Encrypted Message

Next Key
Advertisement

Encrypted Message

Key Acknowledge

Encrypted Message

Next Key
Advertisement

Key Acknowledge

Next Key
Advertisement

SCIMP

Advertise

Receive

[Advertise

Moment Of Compromise
| Receive

Advertise

Receive

Hash-Iterated ratchets will limit exposure of previous messages in the case of key compromise but is inefficient against future attacks since no entropy is ever added to
the ratcheting and you can deterministically compute all future keys.

8b4b f9af

® 7201 b9o56 L= @ b8ee fd62 HI BOB!

W 005a 46de I @O ca3e d151 ENJOYING HACKLU?

} ae02 165fF

> 3505 277 ® 801a 3918 YEP! TERRIFIC SO FAR
Oca6 f28b ® 986 9f02 SEE YOU NEXT YEAR

Note: if you compromise the original key (non-punctured), all messages will be decryptable. No perfect future secrecy.

Multi-device is just a “group chat” except some members have the same identity key.

There exist solutions to transcript consistency, sadly the biggest issue is in UX. How to you represent the different state of messages depending on who got them. How
do you make it scale and adapt to latency?

Personally worried about complexity, scalability and latency issues of consensus protocols.
https://equalit.ie/portfolio/np1sec/

How do you fight SPAM in fully encrypted systems?

Reputation systems require the ability to read *all*
email. It's not good enough to be able to see only spam,
because otherwise the reputations have no way to self
correct. The flow of "not spam” reports is just as

important as the flow of spam reports. Most not spam
reports are generated implicitly of course, by the act of
not marking the message at all.

Reputation contains an inherent problem. You need lots
of users, which implies accounts must be free. If
accounts are free then spammers can sign up for

accounts and mark their own email as not spam,
effectively doing a sybil attack on the system. This is
not a theoretical problem.

Spam filters rely quite heavily on security through
obscurity, because it works well. Though some features
are well known (sending IP. links) there are many others,
and those are secret. If calculation was pushed to the

client then spammers could see exactly what they had to
randomise and the cross-propagation of reputations
wouldn’t work as well.

WITH SPAM IN MIND

Since the bandwidth of this system is so low, a user can trivially
be incapacitated by a small number of messages. Because of
this, we make the system closed: only authorised users can
cause a message to be queued for delivery. This very clearly sets

Pond apart from email. There are no public addresses to which a
Pond message can be sent. Likewise, it's no longer true that the
network is fully connected; if you send a message to two people,
they may not be able to reply to each other.

Blinded signatures can also be implemented over Elliptic Curves.

HACK.LU - ¥ @FREDERICJACOBS

https://moderncrypto.org/mailman/listinfo/messaging
https://whispersystems.org/blog/
https://en.wikipedia.org/wiki/History_of_the_Internet
https://tools.ietf.org/

