Exploring OpenSSH: Hands-On Workshop for Beginners

William Robinet (Conostix S.A.)

Hack.lu 2024 - Luxembourg

Exploring OpenSSH: Hands-On Workshop for Beginners

William Robinet (Conostix S.A.) - 2024-10-22

Matrix Room: https://t.ly/wjSQU — GitHub Repository: https://t.ly/QrHP4

Wi-Fi SSID: workshop — Wi-Fi password: hacklu2024

Before we begin 1/2

Workshop resources

Matrix Room:
https://matrix.to/#/#Hack.lu_2024-0penSSH_Workshop:matrix.oxrg
Used to exchange links and commands.

Workshop repository:
https://github.com/wllm-rbnt/hacklu-2024-openssh-workshop

git clone https://github.com/wllm-rbnt/hacklu-2024-openssh-workshop.git
cd hacklu-2024-openssh-workshop

Shorter URLs:

e Matrix Room -> https://t.ly/wjSQU
¢ Repository -> https://t.ly/QrHP4

Before we begin 2/2

Slides are written in Markdown

Get the PDF/HTML versions or use patat to render the presentation in your terminal

Go to release page https://github.com/jaspervdj/patat/releases and download version 0.12.0.1
or

wget https://github.com/jaspervdj/patat/releases/download/v@.12.0.1/patat-v0.12.0.1-1inux-x86_64.tar.qgz
tar xzf patat-v0.12.0.1-1inux-x86_64.tar.gz patat-v0.12.0.1-1inux-x86_64/patat
patat-v0.12.0.1-1inux-x86_64/patat hacklu-2024-openssh-workshop.patat.md

The Markdown version can be converted to PDF & HTML by using the provided ws_gen script (pandoc & chromium must be installed
first)

About me

¢ Introduced to Open Source & Free Software around the end of the 90°s
e CompSci studies, work in IT at Conostix S.A. - AS197692

¢ Open Source contributions:

o ssldump improvements (build system, bug fixes, JSON output, IPv6 & ja3(s), ...

o asnltemplate: painless ASN.1 editing
¢ Conference workshops & presentations
o & WRNL ...
¢ Contact info
o GitHub: https://github.com/wllm-rbnt
o Mastodon: https://infosec.exchange/@wr

Local Machine Setup

Docker Installation

Reference documentation: https://docs.docker.com/engine/install/

This will provide docker compose v2 command (with a space).

On Debian 12 (bookworm), the following command will provide docker-compose vl command (with a dash).
sudo apt install docker.io docker-compose

On Ubuntu 24.10, the docker compose v2 command can be installed directly:

sudo apt install docker.io docker-compose-v2

On Rocky Linux 9, install docker-ce with docker compose v2 commmand:

sudo dnf config-manager --add-repo https://download.docker.com/linux/rhel/docker-ce.repo
sudo dnf -y install docker-ce docker-ce-cli containerd.io docker-compose-plugin

sudo systemctl --now enable docker

Various other tools

We will use netcat (netcat-traditional on Debian/Ubuntu), curl, wireshark (or tcpdump).

Labs Network Layout

Local Network | Lab network (containers)

| | | |
D >| | gateway | | internal |

| |
| |
| |
| |
| | I'"| The_Internet | | ' ' !
| |
| |
| |

IP: 172.18.0.1 | Pub 172.18.0.2

| Priv 172.19.0.2 <-LAN-> Priv 172.19.0.3
|

(IP addresses may differ from your Docker setup)
Your local machine can reach gateway server over ‘The Internet’

¢ local machine is your personal laptop or VM. It is located “somewhere on the Internet” It is able to reach gateway on TCP port 22 (on
172.18.0.2)

e Lab network is a remote private LAN (172.19.0.0/16 in this case)
e On this remote LAN, gateway is privately known as 172.19.0.2.

e gateway is connected to another machine named internal (172.19.0.3)

Usernames and Passwords

2 users exist on each container: root and user.

Passwords are the same as usernames. user has sudo access on each machine (no password required).

Shell commands

Shell commands are prefixed by a prompt designating the machine on which the command shall be run:

()$ < command>
(gateway)$ <remote command on gateway machine>

(internal)$ <remote command on internal machine>

IP addresses

o [P addresses are configured statically when you execute start_containers.sh
e 3 IP addresses will appear during this workshop

o <gateway_pub>
o <gateway_priv>

o <internal_priv>

Labs Containers (1/2)

¢ 2 containers will be used during this workshop, one for gateway and a second for internal

e Build and start containers with:

()$ cd docker
()$./build_containers.sh
()$./start_containers.sh

¢ Print setup information:

()$./get_info.sh

e Stop containers with:

()$./stop_containers.sh

¢ Cleanup the whole Docker setup: WARNING this will remove all containers, images and networks from your local Docker setup

()$./docker_wipe.sh

()$ sudo systemctl restart docker

Labs Containers (2/2)

Pre-built versions of the containers (provided via USB drives) can be loaded from the docker/images/ directory with the following
command:

()$ cd docker
()$./load_images.sh

Locally built container images, can be exported to files in the docker/images/ directory with the following command:

()$ cd docker

()$./save_images.sh

Illustration: Telnet is not secure

o A telnet server is listening on gateway, TCP port 23
¢ Start a traffic capture on TCP port 23 in another terminal:

()$ sudo apt install wireshark

()$ sudo wireshark

e Start a capture on your main network interface (eth0) or any

e Then, in another shell, run the telnet client on your local machine:

()$ sudo apt install telnet
()$ telnet 172.18.0.2

e Login, user Password, user

¢ Finally, right-click on the first TCP packet that belongs to this connection (port 23), then Follow -> TCP Stream

Two main issues:

o (Cleartext message exchange: vulnerable to traffic sniffing tcpdump/wireshark on traffic path (firewall, router)

¢ Insecure authentication: vulnerable to Man-In-The-Middle attack Ettercap (another machine on same LAN), proxy software on an

intermediate router/firewall

Same goes for FTP, HTTP, SMTP, ...

SSH History & Implementations

SSH stands for Secure SHell

Protocol Versions

e SSH-1.0 1995, by Tatu Ylonen, researcher at Helsinki University of Technology
e SSH-2.0 2006, IETF Standardization RFC 4251-4256

e SSH-1.99 Retro-compatibility pseudo-version, Old client/New Server

e SSH3 (?) Experimental implementation using HTTP/3 (QUIC)

Implementations

¢ OpenSSH on Unices, Client & Server for GNU/Linux, *BSD, MacOS, ...
e OpenSSH on MS Windows

¢ Terminal & File transfer clients for MS Windows: PuTTY, MobaXterm, WinSCP, FileZilla, ...
¢ Dropbear, Lightweight implementation, for embedded-type Linux (or other Unices) systems
¢ On mobile: ConnectBot for Android, Termius for Apple iOS

¢ Network Appliances, OpenSSH or custom implementation

https://en.wikipedia.org/wiki/Secure_Shell#Version_1
https://datatracker.ietf.org/doc/html/rfc4254
https://datatracker.ietf.org/doc/html/rfc4253#section-5.1
https://github.com/francoismichel/ssh3

Focus on OpenSSH Tool suite (on GNU/Linux)

¢ Focus on the OpenSSH tool suite, a project started in 1999
¢ Clients & Server software
¢ This is the reference opensource version for many OSes
e [t is based on modern cryptography algorithms and protocols
e It is widely available out-of-the-box
¢ [t contains a wide range of tools (remote shell, file transfer, key management, ...)
¢ Automation friendly (Ansible, or custom scripts)
e Main tools
o ssh - Remote terminal access
o scp - File transfer
o sftp - FTP-like file transfer
e Helpers

o

ssh-keygen - Public/Private keypair generation

[e]

ssh-copy-id - Key deployment script

o

ssh-agent - Key management daemon (equivalent to PuTTY’s pageant.exe)

o

ssh-add - Key/Agent management tool

Documentation

Online manual pages

Listing of Command LIne man pages:

$ man -k ssh

Listing client’s configuration options:

$ man ssh_config

Listing server’s configuration options (the openssh-server package must be installed):

$ man sshd_config

CLI help, in your terminal, just type

o ssh for the client
o /usr/sbin/sshd --help for the server
o ssh-keygen --help for the key management tool

® 50

First Login (1/2) - Commands, tcpdump & fingerprints

Syntax is: ssh <username>@<host>, where can be a hostname or an IP address
Username and password are the same as the one from the telnet example: - Username: user / Password: user
e Start a traffic capture on TCP port 22 in another terminal, traffic is encrypted:

()$ sudo tcpdump -n -i any -XXX tcp and port 22

¢ Retrieve the server keys fingerprints through a secure channel:

https://github.com/wllm-rbnt/hacklu-2024-openssh-workshop/blob/main/fingerprints.txt

First Login (2/2) - Connection & host authentication

Type the following in a local terminal on your machine:

()$ ssh user@<gateway_pub>
or
()$ ssh -o VisualHostKey=true user@<gateway_pub>

The authenticity of host '172.18.0.2 (172.18.0.2)' can't be established.
ED25519 key fingerprint is SHA256:HFofTLTh2W/1IR3+g@sXGAcRs4ZnVsWwGKmbOzeMeTfk.
+--[ED25519 256]--+
. +*B=*0|
0 00BX.o0|
o 00=00=. |
+ 0..= 0.%|

.S .o o0 o=

|

|

|

|

|

| o . 0..|
| |
| = |
| + oF |
+----[SHA256]----- +

This key is not known by any other names.

Are you sure you want to continue connecting (yes/no/[fingerprint])?

¢ Type yes to accept and go on with user authentication, or no to refuse and disconnect immediately
¢ or type the fingerprint you received from the secure channel If the fingerprint you entered matches the one that is printed, the system

will proceed with user authentication

Known hosts fingerprint databases

Remote Host Authentication is performed only on first connection
~/.ssh/known_hosts is then populated with host reference and corresponding key fingerprint
/etc/ssh/ssh_known_hosts can be used as a system-wide database of know hosts

Hosts references can be stored as clear text (IP or hostname) or the corresponding hash (see HashKnownHosts option)

Host keys location on OpenSSH server

(gateway)$ 1ls -1 /etc/ssh/ssh_host*pub

-TW------- 1 root root 513 May 23 12:39 /etc/ssh/ssh_host_ecdsa_key
-Tw-r--r-- 1 root root 179 May 23 12:39 /etc/ssh/ssh_host_ecdsa_key.pub
-TW------- 1 root root 411 May 23 12:39 /etc/ssh/ssh_host_ed25519_key
-rw-r--r-- 1 oot root 99 May 23 12:39 /etc/ssh/ssh_host_ed25519_key.pub
-TW------- 1 root root 2602 May 23 12:39 /etc/ssh/ssh_host_rsa_key

-Tw-r--r-- 1 root root 571 May 23 12:39 /etc/ssh/ssh_host_rsa_key.pub

Computing fingerprints of host keys

(gateway)$ for i in $(1s -1 /etc/ssh/ssh_host*pub); do ssh-keygen -1f $i; done
256 SHA256:gbF30TEqv4ucpI3VFIE]jq@dnrjiSwoxacnPe+N9mFX8 root@460abcac3a3c (ECDSA)
256 SHA256:/hUAOroJsQzhM4f9qSZxcBLgEYgmoPi@3pVX2fQUxrg root@460abcac3a3c (ED25519)
3072 SHA256:Dogvg+2kFzvrLjqi@0EZ23tnQN3H/+0B3cqm@VZHWiQ root@460abcac3a3c (RSA)

Note: use ssh-keygen -1vf <public_key_file> to generate the visual ASCII art representation of a key

Configuration (1/2)

Configuration files

Client:

e Per-user client configuration: ~/.ssh/config
¢ System-wide client configuration: /etc/ssh/ssh_config
¢ System-wide local configuration: /etc/ssh/ssh_config.d/*

Server:

e Server configuration: /etc/ssh/sshd_config

e Server local configuration: /etc/ssh/sshd_config.d/*

Configuration options

¢ Client configuration options: $ man ssh_config

e Server configuration options: $ man sshd_config

Configuration (2/2) - Per host client configuration

Client configuration options can be specified per host
Example:
Type following in your local ~/ . ssh/config:

Host gateway
Hostname <gateway_pub>
User user

Tips: Printing the “would be applied” configuration

The -G parameter cause ssh to print the configuration that would be applied for a given connection (without actually connecting)
()$ ssh -G gateway

The following command should output your username:

()$ ssh -G gateway | grep user

uUser user

Tips

Increase verbosity

Launch ssh commands with -v parameter in order to increase verbosity, and help with debugging
Example:

()$ ssh -v user@<gateway_pub>

OpenSSH_8.4p1 Debian-5+debllu2, OpenSSL 1.1.1w 11 Sep 2023
debugl: Reading configuration data /home/user/.ssh/config
debugl: Reading configuration data /etc/ssh/ssh_config

[...]

Escape character

The escape character can be used to pass out-of-band commands to ssh client

¢ By default ~, must be at beginning of a new line
e Commands:

o Quit current session ~ .

o List Forwarded connections ~#

o Decrease the verbosity (LogLevel) ~V

o Increase the verbosity (LogLevel) ~v

e Repeat ~ char in order to type it (~~)

Public Key Authentication (1/2)

Main Authentication Methods

e Password authentication

e Public/Private key authentication

o Used for password-less authentication (passphrase may be required to unlock private key)

Lab

¢ Generate a new key pair on your local system (with or without a passphrase):
()$ ssh-keygen -f ~/.ssh/my-ssh-key

 Install your public key on the remote server:
()$ ssh-copy-id -i ~/.ssh/my-ssh-key.pub user@<gateway_pub>

Note: ssh-copy-id copies the public key from ~/.ssh/my-ssh-key.pub to the remote machine in ~/.ssh/authorized_keys

Public Key Authentication (2/2)

¢ Login again with your new key pair:
()$ ssh -i ~/.ssh/my-ssh-key user@<gateway_pub>
¢ Reference your key pair in your personal local configuration file (~/.ssh/config):

Host gateway
Hostname <gateway_pub>
User user

IdentityFile ~/.ssh/my-ssh-key

Authentication Agent (1/2)

The Authentication Agent can hold access to private keys, thus eliminating the need to enter passphrase at each use

Start the agent:

()$ ssh-agent | tee ssh-agent-env.sh
SSH_AUTH_SOCK=/tmp/ssh-KwTcl7ZieUKD/agent.1193973; export SSH_AUTH_SOCK;
SSH_AGENT_PID=1193974; export SSH_AGENT_PID;

echo Agent pid 1193974;

()$ source ssh-agent-env.sh

Agent pid 1193974

Authentication Agent (2/2)

Load private key into the agent:

()$ ssh-add ~/.ssh/my-ssh-key
Enter passphrase for /home/user/.ssh/my-ssh-key: ******%

Identity added: my-ssh-key (user@local)
Connect to remote machine:
()$ ssh user@<gateway_pub>

Going further, keychain can be used to manage ssh-agent & keys across logins sessions

https://www.funtoo.org/Funtoo:Keychain

Remote Command Execution (1/2)

Simple command execution:

()$ ssh user@<gateway_pub> hostname

With redirection to local file:

()$ ssh user@<gateway_pub> hostname > hostname.txt

Remote Command Execution (2/2)

With redirection to remote file:

()$ ssh user@<gateway_pub> "hostname > hostname.txt"

With pipes:

()$ echo blabla | ssh user@<gateway_pub> "cat - | tr 'a-z' 'A-Z""

Jumphost (1/2)

A Jump Host is a machine used as a relay to reach another, otherwise possibly unreachable, machine. This unreachable machine is named
internal-machine

Internet

|

|

|

| [| 1 [

|| FH—I»| ogateway |——»] internal |
| | |

|

|

|

the outside world

N

| | used as jumphost unreachable to
| |

| |

Lab objective: Connect to internal from your local machine via SSH with a single command

Jumphost (2/2)

Lab setup:
¢ First, copy your public key to the remote server (gateway):
()$ scp .ssh/my-ssh-key.pub user@<gateway_pub>:
¢ Login to the remote server then copy your public key to the destination machine:

()$ ssh user@<gateway_pub>
(gateway)$ ssh-copy-id -f -i my-ssh-key.pub <internal_priv>

e Connect to the remote machine with a single command:
()$ ssh -J user@<gateway_pub> user@<internal_priv>

Note: internal host key fingerprints available at https://github.com/wllm-rbnt/hacklu-2024-openssh-
workshop/blob/main/fingerprints.txt

SOCKS proxy (1/2)

A SOCKS server proxies TCP connections to arbitrary IP addresses and ports

With SOCKS 5, DNS queries can be performed by the proxy on behalf of the client

Local network Internal network

[| [|
| | | |
| | | |
| | step 1 | 1 Step 3 | L
| | | I I»| gateway ——»| internal ||
I s~ | SSH | | T ST L
	socks			The SOCKS proxy The internal HTTP
' :		server		
Step 2				
[| | |

Lab objective: Reach the internal HTTP server at http://secret-intranet (running on internal) through a SOCKS proxy running on gateway

SOCKS proxy (2/2)

o Start a local SOCKS Proxy by establishing an SSH connection to gateway with parameter -D:
()$ ssh -D 1234 user@<gateway_pub>

¢ Check, locally, for listening TCP port with
()$ ss -tpln | grep :1234

¢ Configure your local browser to use local TCP port 1234 as a SOCKS proxy
¢ Configure your local browser to send DNS queries though the SOCKS proxy (tick the option in configuration)
¢ Point your browser to http://secret-intranet or Try it with curl:

()$ http_proxy=socks5h://127.0.0.1:1234 curl http://secret-intranet

This is the secret Intranet on internal machine listening on 127.0.0.1 port 80.

¢ Bonus: look at your local traffic with tcpdump, you shouldn’t see any DNS exchanges

Reverse SOCKS proxy (1/2)

A reverse SOCKS proxy setup allows a remote machine to use your local machine as a SOCKS proxy

Internet		Internal network
	step 1	
b I»	gateway	——»
I S T B B s ! '		
	Step 3	.
v HTTP		
http://icanhazip.com		
		SOCKS

Lab objective: Reach the external HTTP server at http://icanhazip.com from gateway through a SOCKS proxy running on your local
machine

Reverse SOCKS proxy (2/2)

Setup:

o Start a remote SOCKS Proxy by establishing an SSH connection to gateway with parameter -R:

()$ ssh -R 1234 user@<gateway_pub>

e Check, on gateway, for listening TCP port with
(gateway)$ ss -tpln | grep :1234

e Point your curl on gateway to http://icanhazip.com though the SOCKS proxy listening on 127.0.0.18

(gateway)$ http_proxy=socks5h://127.0.0.1:1234 curl http://icanhazip.com
<Conference public IP address>

LocalForward (1/2)

A LocalForward creates a locally listening TCP socket that is connected over SSH to a TCP port reachable in the network scope of a remote
machine

Lab objective: Create and connect local listening TCP socket on port 8888 to TCP port 80 on 127.0.0.1 in the context of gateway
Setup:
¢ Configure the forwarding while connecting to gateway through SSH with -L parameter:

()$ ssh -L 8888:127.0.0.1:80 user@<gateway_pub>

LocalForward (2/2)

-L parameter syntax:
<local_port>:<remote_IP>:<remote_port>
can be extended to
<local_IP>:<local_port>:<remote_IP>:<remote_port>

e SSH is now listening on TCP port 8888 on your local machine, check with:
()$ ss -tpln

o Point your browser to http://127.0.0.1:8888 You should see something like:

Hello world ! This is gateway listening on 127.0.0.1 port 80.

RemoteForward (1/2)

A RemoteForward creates a listening TCP socket on a remote machine that is connected over SSH to a TCP port reachable in the network

scope of the local machine
Lab objective: Create a TCP socket on gateway on port 8123 and connect it to a locally listening netcat on TCP port 1234
Setup:

o Start a listening service on localhost on your local machine on TCP port 1234:

()$ nc -1 -p 1234 -s 127.0.0.1 # if you use netcat-traditional
or
()$ nc -1 127.0.0.1 1234 # if you use netcat-openbsd

e Check that it’s listening with ss (netstat replacement on GNU/Linux):
()$ ss -tpln | grep 1234
e Configure the forwarding on TCP port 8123 while connecting to gateway with -R parameter:

()$ ssh -R 8123:127.0.0.1:1234 user@<gateway_pub>

e ssh is now listening on TCP port 8123 on gateway

RemoteForward (2/2)

-R parameter syntax:
<remote_port>:<local_IP>:<local_port>
can be extended to
<remote_IP>:<remote_port>:<local_IP>:<local_port>
e Check its listening status on gateway:
(gateway)$ ss -tpln | grep 8123
¢ Connect to the forwarded service on remote machine on port 8123 with netcat:
(gateway)$ nc 127.0.0.1 8123
¢ Both netcat instances, local & remote, should be able to communicate with each other

Note: reverse proxy SOCKS is a special use case of -R

X11 Forwarding

Lab objective: Start a graphical application on gateway, and get the visual feedback locally
Setup:
e Connect to gateway with -X parameter:
()$ ssh -X user@<gateway_pub>
e Then, start a graphical application on the remote machine:
(gateway)$ xmessage "This is a test !" &!
e Check processes on gateway and local machine:
(gateway |)$ ps auxf
Notes:

e On a Linux local client, the XOrg graphical server is used
¢ On a Windows machine use:
o VcXsrv: https://sourceforge.net/~/vcxsrv/

o or XMing: https://sourceforge.net/~/xming/

Connection to Legacy Systems (1/4)

Host key algorithm mismatch

()$ ssh -p 4022 user@<gateway_pub>
Unable to negotiate with 172.18.0.2 port 4022: no matching host key type found. Their offer: ssh-rsa

()$ ssh -o HostKeyAlgorithms=ssh-rsa -p 4022 user@<gateway_pub>
e Listing known host key algorithms:

()$ ssh -Q key

Connection to Legacy Systems (2/4)

Wrong key exchange algorithm

()$ ssh -p 4023 user@<gateway_pub>

Unable to negotiate with 172.18.0.2 port 4023: no matching key exchange method found. Their offer: diffie-
hellman-groupl-shal,kex-strict-s-v@@@openssh.com

()$ ssh -o KexAlgorithms=diffie-hellman-groupl-shal -p 4023 user@<gateway_pub>

e Listing known key exchange algorithms:

()$ ssh -Q kex

Connection to Legacy Systems (3/4)

Wrong cipher

()$ ssh -p 4024 user@<gateway_pub>
Unable to negotiate with 172.18.0.2 port 4024: no matching cipher found. Their offer: aes256-cbc

()$ ssh -o Ciphers=aes256-cbc -p 4024 user@<gateway_pub>

e Listing known ciphers:

()$ ssh -Q cipher

Connection to Legacy Systems (4/4)

Wrong public key signature algorithm

Disclaimer: This one is broken with the current Docker containers

()$ ssh -p 4025 -i ~/.ssh/mykey user@<gateway_pub>
Received disconnect from 172.18.0.2 port 4025:2: Too many authentication failures
Disconnected from 172.18.0.2 port 4025

"debugl: send_pubkey_test: no mutual signature algorithm" (with ssh -v)

()$ ssh -o PubkeyAcceptedAlgorithms=ssh-rsa -i ~/.ssh/mykey user@<gateway_pub>
e Listing known public key sig algorithms:

()$ ssh -Q key-sig

or

()$ ssh -Q PubkeyAcceptedAlgorithms

SSH Tarpit

e The legitimate SSH server is running on port 22 on gateway
¢ endlessh, a simple honeypot, is running on port 2222 on gateway for demonstration purpose

e Try to connect to port 2222 with

()$ ssh user@<gateway_pub> -p 2222

e Check both ports with netcat:

()$ nc -nv <gateway_pub> 22
(UNKNOWN) [<gateway_pub>] 22 (ssh) open
SSH-2.0-0penSSH_9.2p1 Debian-2

()$ nc -nv <gateway_pub> 2222
(UNKNOWN) [<gateway_pub>] 2222 (?) open
XkZ?NK>-h5xs#/0SF

SU6Jv

6%n[;

M5I'R8.W}wgE?"DhAD1"jp"$x#4;Z
wT%mJK_15(Nf]Iw_

$2'7ZUmQ2YgdyXnI,

\7_c.f4@bQHcY>N'"y

[...]

tmux - terminal multiplexer

tmux can be used to keep interactive shell tasks running while you’re disconnected

e Installation: $ sudo apt install tmux

¢ Create a tmux session: $ tmux

e List tmux sessions: $ tmux 1s

e Attach to first session: $ tmux a

e Attach to session by index #: $ tmux a -t 1

e Commands inside a session:
o Ctrl-b d: detach from session
o Ctrl-b c: create new window
o Ctrl-b n/Ctrl-b p: switch to next/previous window
o Ctrl-b %/Ctrl-b ":split window vertically/horizontally
o Ctrl-b <arrow keys>: move cursor across window panes
o Ctrl-[+ <arrow keys>: browse current pane backlog, press return to quit

¢ Documentation: $ man tmux

References

e OpenSSH

e SSH History (Wikipedia)

e SSH Mastery by Michael W. Lucas

e SSH Mastery @BSDCAN 2012

e A Visual Guide to SSH Tunnels

e SSH Kung Fu

e The Hacker’s Choice SSH Tips & Tricks
e Why port 22 ?

https://www.openssh.com/
https://en.wikipedia.org/wiki/Secure_Shell
https://mwl.io/nonfiction/tools#ssh
https://www.bsdcan.org/2012/schedule/attachments/193_SSH%20Mastery%20BSDCan%202012-public.pdf
https://www.bsdcan.org/2012/schedule/attachments/193_SSH%20Mastery%20BSDCan%202012-public.pdf
https://www.bsdcan.org/2012/schedule/attachments/193_SSH%20Mastery%20BSDCan%202012-public.pdf
https://iximiuz.com/en/posts/ssh-tunnels/
https://blog.tjll.net/ssh-kung-fu/
https://github.com/hackerschoice/thc-tips-tricks-hacks-cheat-sheet#ssh
https://www.ssh.com/academy/ssh/port

Thanks for your attention !

