

Disconnecting games with a single packet: an Unreal untold story

Hugo Bertin¹, Iliès Benhabbour², Prof. Marc Dacier², Prof. Yérom-David Bromberg¹

1. IRISA, Univ. Rennes; 2. KAUST

Hack.lu 2024

Table of Contents

Cheating in the video games industry

- New DoS attacks exploiting Unreal Engine networking components
- Demonstrations
- Practical exploitability of the attacks

Conclusion

Table of Contents

Cheating in the video games industry

- New DoS attacks exploiting Unreal Engine networking components
- Demonstrations
- Practical exploitability of the attacks
 Conclusion

- A lot of money is involved!!!
 - Forecasted revenue of 455 billion USD in 2024
 - More than twice the global movie and entertainment market

- A lot of money is involved!!!
 - Forecasted revenue of 455 billion USD in 2024
 - More than twice the global movie and entertainment market
- Massive investments
 - Saudi Arabia invested \$20B in the gaming sector [1]

^[1] A. Raza, "Ali Raza on LinkedIn: #gaming #esports #investment #tech | 100 comments," *Linkedin.com*, Oct. 06, 2024. https://www.linkedin.com/feed/update/urn:li:activity:7248566123669925888/ (accessed Oct. 14, 2024).

- A lot of money is involved!!!
 - Forecasted revenue of 455 billion USD in 2024
 - More than twice the global movie and entertainment market
- Massive investments
 - Saudi Arabia invested \$20B in the gaming sector [1]
- Continuously growing interest in Esports
 - The 2024 Esports World Cup in Ryadh attracted 500 million viewers [1]
 - The International 10 tournament's prize pool: \$40 million [2]
 - The first Olympic Esports games will be host in Saudi Arabia in 2025 [1]

^[1] A. Raza, "Ali Raza on LinkedIn: #gaming #esports #investment #tech | 100 comments," Linkedin.com, Oct. 06, 2024. https://www.linkedin.com/feed/update/urn:li:activity:7248566123669925888/ (accessed Oct. 14, 2024).

^[2] S. Nordmark and J. Heath, "The 10 Largest Prize Pools in Esports," Dot Esports, Aug. 28, 2019. https://dotesports.com/general/news/biggest-prize-pools-esports-14605

Cheating: a major threat to the industry

Cheating: a major threat to the industry

Cheating: a major threat to the industry

37 CS:GO coaches have been banned for abusing the Spectator bug

[1] E. Matthews, "37 CS:GO coaches have been banned for abusing the Spectator bug," *PC Gamer*, Sep. 28, 2020. https://www.pcgamer.com/37-csgo-coaches-have-been-banned-for-abusing-the-spectator-bug/

From Game Changers to Game Cheaters: Two Pro VALORANT Players Implicated by Riot Games in Cheating Scandal

[3] G. DeSena, "From Game Changers to Game Cheaters: Two Pro VALORANT Players Implicated by Riot Games in Cheating Scandal - Esports Illustrated," *Esports Illustrated On SI*, Jan. 17, 2024. https://www.si.com/esports/valorant/noot-noot-cheating-scandal

Does the video game industry have a \$29 billion cheating problem? 'Dota 2' Play

[2] "Does the video game industry have a \$29 billion cheating problem?," *Gamedeveloper.com*, 2020. https://www.gamedeveloper.com/business/does-the-video-game-industry-have-a-29-billion-cheating-problem-

Report: Cheating Is Becoming A Big Problem In Online Gaming

[4] N. Granados, "Report: Cheating Is Becoming A Big Problem In Online Gaming," *Forbes*. https://www.forbes.com/sites/ nelsongranados/2018/04/30/report-cheating-is-becoming-abig-problem-in-online-gaming/

'Dota 2' Player Who Used Programmable Mouse Disqualified His Team From \$15 Million Tournament

[5] M. Gault, "'Dota 2' Player Who Used Programmable Mouse Disqualified His Team From \$15 Million Tournament," *VICE*, Jun. 25, 2018. https:// www.vice.com/en/article/dota-2-player-who-usedprogrammable-mouse-disqualified-his-team-fromdollar15-million-tournament/

Cheating in Online Games

Cheating in Online Games

- Focus on the client
 - Client cheats: aimbots, wall-hacks...
 - Mitigation: Anti-Cheats

Cheating in Online Games

- Focus on the client
 - Client cheats: aimbots, wall-hacks...
 - Mitigation: Anti-Cheats
- The network can also be leveraged to cheat
 - => Our focus in this talk

Table of Contents

Cheating in the video games industry

- New DoS attacks exploiting Unreal Engine networking components
- Demonstrations
- Practical exploitability of the attacks
 Conclusion

Game Engines

- Unreal Engine, Source Engine, Unity...
- Game engines simplify video games development
 - Common libraries to re-use
 - Physics, graphics, networking
- Used for server and client
- => Many games share pieces of software

High-level game development	
Game development API	'
Game Engine	
Core components)
OS	

Unreal Engine (UE)

- Unreal Engine
 - Epic Games' game engine
 - Publicly available source code
 - Powering famous games:
 - Fortnite, Valorant, PUBG, The Finals, Sea of Thieves ...

• Game communications use an application-layer protocol based on UDP

- Game communications use an application-layer protocol based on UDP
- Joining a game session:
 - 1. First the player authenticates himself to the game provider's server to retrieve information to contact the game server (IP address, Port number).
 - 2. The game client contacts the game server to initiate a connection process to establish a connection through a handshake.
 - 3. Client and server can now exchange information about the game.

- Game communications use an application-layer protocol based on UDP
- Joining a game session:
 - 1. First the player authenticates himself to the game provider's server to retrieve information to contact the game server (IP address, Port number).
 - 2. The game client contacts the game server to initiate a connection process to establish a connection through a handshake.
 - 3. Client and server can now exchange information about the game.
- The game server identify clients by their IP:Port

- Game communications use an application-layer protocol based on UDP
- Joining a game session:
 - 1. First the player authenticates himself to the game provider's server to retrieve information to contact the game server (IP address, Port number).
 - 2. The game client contacts the game server to initiate a connection process to establish a connection through a handshake.
 - 3. Client and server can now exchange information about the game.
- The game server identify clients by their IP:Port
- The game server's IP:Port is the same for all the clients

- Related to the packets reception process in Unreal Engine
- Disconnection: the client has to establish a new connection

- Related to the packets reception process in Unreal Engine
- Disconnection: the client has to establish a new connection
- Same behaviour for the client and the server

- Related to the packets reception process in Unreal Engine
- Disconnection: the client has to establish a new connection
- Same behaviour for the client and the server

How to identify faulty packets?

- Static code analysis on Unreal Engine source code (using Doxygen [3])
 - Call/Caller Graphs
 - Inheritance Diagrams
- => Trace the paths leading to a disconnection

- Dynamic profiling on a toy game
 - Unreal Engine insight tools
 - Tracing, logging in Unreal Engine's source code
- => Trace the engine behaviour

How to identify faulty packets?

- Static code analysis on Unreal Engine source code (using Doxygen [3])
 - Call/Caller Graphs
 - Inheritance Diagrams
- => Trace the paths leading to a disconnection

- Dynamic profiling on a toy game
 - Unreal Engine insight tools
 - Tracing, logging in Unreal Engine's source code
- => Trace the engine behaviour

• We identified 5 different ways of crafting a packet not passing the sanity checks

- We identified 5 different ways of crafting a packet not passing the sanity checks
- None of these packets require knowledge about a previous packet

- We identified 5 different ways of crafting a packet not passing the sanity checks
- None of these packets require knowledge about a previous packet
- Only information required:
 - Source IP address / Port number
 - Destination IP address / Port number

Direction	Source	Destination
Client -> Server	Client's IP:Port	Server's IP:Port
Server -> Client	Server's IP:Port	Client's IP:Port

- Header contains protocol information
- Packed Header Bunches and Bunches contain game information
 - => Sensitive information that should not be exposed

- Header contains protocol information
- Packed Header Bunches and Bunches contain game information
 - => Sensitive information that should not be exposed

- Header contains protocol information
- Packed Header Bunches and Bunches contain game information
 - => Sensitive information that should not be exposed

- Header contains protocol information
- Packed Header Bunches and Bunches contain game information
 - => Sensitive information that should not be exposed

- Header contains protocol information
- Packed Header Bunches and Bunches contain game information
 - => Sensitive information that should not be exposed

Packets have the following layout:

- Header contains protocol information
- Packed Header Bunches and Bunches contain game information

=> Sensitive information that should not be exposed

• Encryption is not applied to the *Header*

Packets have the following layout:

- Header contains protocol information
- Packed Header Bunches and Bunches contain game information
 - => Sensitive information that should not be exposed
- Encryption is not applied to the *Header*

=> Encryption is not a solution

Table of Contents

Cheating in the video games industry

- New DoS attacks exploiting Unreal Engine networking components
- Demonstrations

Practical exploitability of the attacks
 Conclusion

Demonstration 1: Valorant

Setting at the beginning of the video:

- Valorant match within a LAN (Esport scenario).
- Attackers: They have to place a bomb, taking 30 seconds to detonate.
- Defenders: They defend against the bomb, they can defuse the bomb (taking 7 seconds).
- Viewing the screen of a defender.

Scenario in the video:

- 1. Attackers place the bomb.
- 2. A defender kills the last attacker alive.
- 3. Defenders are likely to win: they have time to defuse the bomb.
- 4. Attackers launch an attack.
- 5. Effect: Defenders are repeatedly disconnected. When they re-join the game, they have to start the defusing action again.

Demonstration 1: Valorant

https://youtu.be/dWy-L1ZQZw4

Demonstration 2: Fortnite

Setting at the beginning of the video:

- Fortnite game on PS5
- Online game scenario
- 3 players A, B and C (all opponents)

Scenario in the video:

- 1. Player B kills player C, the information is displayed on the screen.
- 2. Player A uses this information to try to connect to B to get his IP, using the PSN P2P calls.
- 3. Player B answers the incoming call.
- 4. Player A launches an attack.
- 5. Effect: Player B gets kicked out of the game.

Demonstration 2: Fortnite

https://youtu.be/NJEWW9E2rXk

Table of Contents

Cheating in the video games industry

- New DoS attacks exploiting Unreal Engine networking components
- Demonstrations
- Practical exploitability of the attacks

Conclusion

- Submitted to 5 video game studios impacted by the vulnerability
 - Epic Games (Fortnite), Riot Games (Valorant), Sea of Thieves (Rare/Xbox Game studio), Krafton (PUBG), Embark (The Finals)
- Detailed explanation on how to reproduce the attacks
 - Video demonstrations
 - A server they could use to reproduce the attacks

 Reports considered as informative: "Hard to reproduce in a concrete real-life case"

- Reports considered as informative: "Hard to reproduce in a concrete real-life case"
 - i. "It is hard to find the IP address on the Internet."

- Reports considered as informative: "Hard to reproduce in a concrete real-life case"
 - i. "It is hard to find the IP address on the Internet."
 - ii. "It is hard to spoof an IP addresses on the Internet."

- Reports considered as informative: "Hard to reproduce in a concrete real-life case"
 - i. "It is hard to find the IP address on the Internet."
 - ii. "It is hard to spoof an IP addresses on the Internet."
 - iii. "Players are protected by firewalls."

- Players can play within the same LAN
 - Esport
- In a LAN
 - Finding the victim's IP addresses is not needed
 - Broadcast MAC adress: FF:FF:FF:FF:FF:FF
 - Broadcast IP address: 255.255.255.255
 - The only information needed: victim's Port number
 - Possible ports: dynamic port range (49152 to 65535)
 - => Easy to bruteforce
 - To avoid being incriminated, the sender can:
 - Spoof another source address (MAC layer)
 - Target himself

	Source	Dest
Port	Server's Port	Bruteforce
IP	Server's IP	255.255.255 .255
MAC	00-B0-D0-63- C2-26	FF:FF:FF:FF F:FF

In an online game scenario:

In an online game scenario:

- Other mediums can be exploited
 - Voice communication channels
 - Redirection in text cheats or Discord servers
 - Gamertag-IP databases
 - Social engineering

In an online game scenario:

- Other mediums can be exploited
 - Voice communication channels
 - Redirection in text cheats or Discord servers
 - Gamertag-IP databases
 - Social engineering
- In our demonstration on Fortnite: Play Station Network
 - PlayStation's voice communication channel
 - Peer-to-peer (P2P) architecture
 - => Answering a call leaks IP address

ii. Hard to spoof an IP address on the Internet?

- IP spoofing: falsifying the source IP address
- Internet Service Providers (ISPs) theoretically implement Source Address Validation (SAV) as a countermeasure
 - Packets filtering implemented at the edge of Autonomous Systems
 - Ensures that the source IP address in a packet align with the network it is from

ii. Hard to spoof an IP address on the Internet?

- IP spoofing: falsifying the source IP address
- Internet Service Providers (ISPs) theoretically implement Source Address Validation (SAV) as a countermeasure
 - Packets filtering implemented at the edge of Autonomous Systems
 - Ensures that the source IP address in a packet align with the network it is from
- However, not everyone is doing the job!!
 - Some ISPs do not enforce SAV well
 - "69.8% of all the Autonomous Systems (ASes) in the Internet do not filter spoofed packets" [4]

 ^[4] Tianxiang Dai and Haya Shulman. 2021. SMap: Internet-wide Scanning for Spoofing. In Proceedings of the 37th Annual Computer Security Applications Conference (ACSAC '21). Association for Computing Machinery, New York, NY, USA, 1039–1050. https://doi.org/ 10.1145/3485832.3485917 Hack.lu 2024 - An Unreal Untold Story - Hugo Bertin

ii. Hard to spoof an IP address on the Internet?

- How to find them? The Spoofer Project [5]
 - Measurement platforms pinpointing Autonomous Systems (AS) where SAV is not well-implemented.
 - Results are published on their website.
 - Steps to set up a server:
 - 1. Identify a vulnerable AS with spoofer [6].
 - 2. Contact the service provider to rent a <u>dedicated server</u>.
 - 3. You are now able to spoof IP addresses!!

[5] Center for Applied Internet Data Analysis, "Spoofer Project," *CAIDA*. [Online]. Available: <u>https://www.caida.org/projects/spoofer/</u>.
[6] Center for Applied Internet Data Analysis, "Spoofer: Recent Tests," *CAIDA*. [Online]. Available: <u>https://spoofer.caida.org/</u>
<u>recent_tests.php</u>.

iii. Players are protected by firewalls

iii. Players are protected by firewalls

• Players are playing behind firewalls, the address exposed is owned by the firewall and not by the victim

	Source	Dest
Port		
IP		
- Players are playing behind firewalls, the address exposed is owned by the firewall and not by the victim
- Players are continuously communicating with the game server
 - Any packet with the right quadruple Source IP:Port; Destination IP:Port is accepted by the firewall and rooted to the player

	Source	Dest
Port		
IP		

- Players are playing behind firewalls, the address exposed is owned by the firewall and not by the victim
- Players are continuously communicating with the game server
 - Any packet with the right quadruple Source IP:Port; Destination IP:Port is accepted by the firewall and rooted to the player
- The game server IP:Port are the same for all the players
 - => The Source IP:Port is known

	Source	Dest
Port	Server's Port	
IP	Server's IP	

- Players are playing behind firewalls, the address exposed is owned by the firewall and not by the victim
- Players are continuously communicating with the game server
 - Any packet with the right quadruple Source IP:Port; Destination IP:Port is accepted by the firewall and rooted to the player
- The game server IP:Port are the same for all the players
 - => The Source IP:Port is known

	Source	Dest
Port	Server's Port	
IP	Server's IP	Firewall's IP

- Players are playing behind firewalls, the address exposed is owned by the firewall and not by the victim
- Players are continuously communicating with the game server
 - Any packet with the right quadruple Source IP:Port; Destination IP:Port is accepted by the firewall and rooted to the player
- The game server IP:Port are the same for all the players
 - => The Source IP:Port is known
- We need to find the port used by the player
 - Range of possible ports 0-65535
 - Packets of 48 bytes on wire are enough to disconnect
 - At 25 Mbps, it takes 1 s to bruteforce
 - => Can be bruteforced easily

	Source	Dest
Port	Server's Port	Bruteforce
IP	Server's IP	Firewall's IP

Potential mitigations

- Modifying Unreal Engine source code to:
 - Encrypt the whole packet
 - Drop suspicious packets (without disconnecting)
- Securing the transport layer
 - E.g. using TLS (Transport Layer Security) providing authentication, confidentiality and integrity to TCP, or UDP with DTLS.
- Despite reporting the vulnerability to Epic Games, no fix was observed
- Unreal Engine's code is available => Game developers can directly implement their modifications.

Table of Contents

Cheating in the video games industry

- New DoS attacks exploiting Unreal Engine networking components
- Demonstrations
- Practical exploitability of the attacks

Conclusion

• While being powerful tools, game engine inadvertently broaden the scope of vulnerabilities.

• While being powerful tools, game engine inadvertently broaden the scope of vulnerabilities.

=> Enforcing security at the engine level is primordial to strengthen the overall game industry.

• While being powerful tools, game engine inadvertently broaden the scope of vulnerabilities.

=> Enforcing security at the engine level is primordial to strengthen the overall game industry.

• We disclosed and explained new DoS attacks, which are easy to put in practice.

• While being powerful tools, game engine inadvertently broaden the scope of vulnerabilities.

=> Enforcing security at the engine level is primordial to strengthen the overall game industry.

• We disclosed and explained new DoS attacks, which are easy to put in practice.

=> Eye-opener for that community. The erroneous reply form the the video games editors shows a lack of awareness and consideration about the network-level security in online games.

• While being powerful tools, game engine inadvertently broaden the scope of vulnerabilities.

=> Enforcing security at the engine level is primordial to strengthen the overall game industry.

• We disclosed and explained new DoS attacks, which are easy to put in practice.

=> Eye-opener for that community. The erroneous reply form the the video games editors shows a lack of awareness and consideration about the network-level security in online games.

- Potential impact beyond video games. Unreal Engine also used in: VR, digital twins, automotive HMI...
 - It might lead to a more critical issue tomorrow.

• While being powerful tools, game engine inadvertently broaden the scope of vulnerabilities.

=> Enforcing security at the engine level is primordial to strengthen the overall game industry.

• We disclosed and explained new DoS attacks, which are easy to put in practice.

=> Eye-opener for that community. The erroneous reply form the the video games editors shows a lack of awareness and consideration about the network-level security in online games.

- Potential impact beyond video games. Unreal Engine also used in: VR, digital twins, automotive HMI...
 - It might lead to a more critical issue tomorrow.

=> Extremely important to let people know about it and fix it.

Thank you for your attention!!

Questions?

hugo.bertin35@gmail.com

linkedin.com/in/bertin-hugo/

References

[1] A. Raza, "Ali Raza on LinkedIn: #gaming #esports #investment #tech | 100 comments," *Linkedin.com*, Oct. 06, 2024. https://www.linkedin.com/feed/update/urn:li:activity:7248566123669925888/. [Accessed: Oct. 7, 2024].

[2] S. Nordmark and J. Heath, "The 10 Largest Prize Pools in Esports," Dot Esports, Aug. 28, 2019. <u>https://dotesports.com/general/news/biggest-prize-pools-esports-14605</u>. [Accessed: Oct. 7, 2024].

[3] Doxygen, "Doxygen: Generate documentation from source code," [Online]. Available: <u>https://www.doxygen.nl</u>. [Accessed: Oct. 7, 2024].

[4] Tianxiang Dai and Haya Shulman. 2021. SMap: Internet-wide Scanning for Spoofing. In Proceedings of the 37th Annual Computer Security Applications Conference (ACSAC '21). Association for Computing Machinery, New York, NY, USA, 1039–1050. <u>https://doi.org/10.1145/3485832.3485917</u>

[5] Center for Applied Internet Data Analysis, "Spoofer Project," *CAIDA*. [Online]. Available: <u>https://www.caida.org/projects/</u> <u>spoofer/</u>. [Accessed: Oct. 7, 2024].

[6] Center for Applied Internet Data Analysis, "Spoofer: Recent Tests," *CAIDA*. [Online]. Available: <u>https://spoofer.caida.org/</u> <u>recent_tests.php</u>. [Accessed: Oct. 7, 2024].

Multiple paths leading to a disconnection

Method	Condition to close	Exploit
UNetConnection::Recei vedRawPacket	 PacketHandler returns an error processing the packet: Handshake packet handler: <i>StatelessConnectHandlerComponent</i> Decryption handlers 	 Handshake bit to 1, packet not compliant to the handshake protocol If using encryption, garbage packet

Multiple paths leading to a disconnection

Method	Condition to close	Exploit
UNetConnection::Recei	Wrong Acked Sequence (!=Last Notified PacketId)	Bad information in the Packed
vedPacket		Header

Multiple paths leading to a disconnection

Method	Condition to close	
UNetConnection::Disp	Bad channel index	Bad information in the Bunch
atchPacket		

