
©2024, SonarSource S.A, Switzerland.

SQL Injection Isn't Dead
Smuggling Queries at the Protocol Level

Paul Gerste – Hack.lu 2024 – October 24, 2024

©2024, SonarSource S.A, Switzerland.

LOWER
DECKS

©2024, SonarSource S.A, Switzerland.

db.users.find({
 id: 1,
})

HGETALL user:1 SELECT * FROM users WHERE id=1

©2024, SonarSource S.A, Switzerland.

messageLength requestID responseTo

17 00 00 00 00 00 00 00 00 00 00 00

opCode value

DD 07 00 00 …

Type Length Value…

'Q' 00 00 00 17 "SELECT …"

©2024, SonarSource S.A, Switzerland.

Teaser

func getUser(w http.ResponseWriter, req *http.Request) (user User) {

 body, _ := io.ReadAll(req.Body)

 id := string(body)

 db.QueryRow("SELECT * FROM users WHERE id=$1", id).Scan(&user)

 // ...

}

©2024, SonarSource S.A, Switzerland.

SELECT * FROM speakers

● Paul Gerste

○ Vulnerability Researcher at Sonar

● I love to break (web) stuff

● I love to play and organize CTFs with FluxFingers

○ Hack.lu CTF challenges are still up!

©2024, SonarSource S.A, Switzerland.

Outline

● The Idea

● Attacking Database Wire Protocols

○ PostgreSQL

○ MongoDB

● Real-World Applicability

● Future Research

● Takeaways

The Idea
Request smuggling, but for binary protocols

©2024, SonarSource S.A, Switzerland.

Request smuggling…

Proxy ApplicationAttacker
HTTP⚡ HTTP

©2024, SonarSource S.A, Switzerland.

… but for binary protocols

Proxy ApplicationAttacker
HTTP⚡ HTTP

Application DatabaseAttacker
?? ⚡

©2024, SonarSource S.A, Switzerland.

Why Database Wire Protocols?

● Applicability

○ Almost every web app has a database

● Severity

○ Interesting data (e.g., PII)

○ Relevant data (e.g., for authentication)

● Exploitability

○ Most queries contain some user input

Attacking Database
Wire Protocols

©2024, SonarSource S.A, Switzerland.

High-Level Protocol Comparison

● PostgreSQL

● MySQL

● MongoDB

©2024, SonarSource S.A, Switzerland.

High-Level Protocol Comparison

● PostgreSQL

● MySQL

● MongoDB

Type Length Value…

'Q' 00 00 00 17 "SELECT …"

©2024, SonarSource S.A, Switzerland.

High-Level Protocol Comparison

● PostgreSQL

● MySQL

● MongoDB

Type Length Value…

'Q' 00 00 00 17 "SELECT …"

Length Sequence Value…

00 00 17 00 "SELECT …"

©2024, SonarSource S.A, Switzerland.

High-Level Protocol Comparison

● PostgreSQL

● MySQL

● MongoDB messageLength requestID responseTo

17 00 00 00 00 00 00 00 00 00 00 00

opCode value

DD 07 00 00 …

Type Length Value…

'Q' 00 00 00 17 "SELECT …"

Length Sequence Value…

00 00 17 00 "SELECT …"

Case Study:

PostgreSQL

©2024, SonarSource S.A, Switzerland.

PostgreSQL Wire Protocol

● Type: 1-byte identifier

● Length: 4-byte integer

● Value

Type Length Value…

'Q' 00 00 00 17 "SELECT …"

©2024, SonarSource S.A, Switzerland.

PostgreSQL Wire Protocol

● Type: 1-byte identifier

● Length: 4-byte integer

● Value

Max value: 232-1

Type Length Value…

'Q' 00 00 00 17 "SELECT …"

©2024, SonarSource S.A, Switzerland.

PostgreSQL Wire Protocol

● Type: 1-byte identifier

● Length: 4-byte integer

● Value

Max value: 232-1

🤔

Type Length Value…

'Q' 00 00 00 17 "SELECT …"

©2024, SonarSource S.A, Switzerland.

The Bug: pgx

func (src *Bind) Encode(dst []byte) []byte {

 dst = append(dst, 'B')

 sp := len(dst)

 // …

 pgio.SetInt32(dst[sp:], int32(len(dst[sp:])))

 return dst

}

©2024, SonarSource S.A, Switzerland.

The Bug: pgx

func (src *Bind) Encode(dst []byte) []byte {

 dst = append(dst, 'B')

 sp := len(dst)

 // …

 pgio.SetInt32(dst[sp:], int32(len(dst[sp:])))

 return dst

}

Write message type

©2024, SonarSource S.A, Switzerland.

The Bug: pgx

func (src *Bind) Encode(dst []byte) []byte {

 dst = append(dst, 'B')

 sp := len(dst)

 // …

 pgio.SetInt32(dst[sp:], int32(len(dst[sp:])))

 return dst

}

Save size offset

©2024, SonarSource S.A, Switzerland.

The Bug: pgx

func (src *Bind) Encode(dst []byte) []byte {

 dst = append(dst, 'B')

 sp := len(dst)

 // …

 pgio.SetInt32(dst[sp:], int32(len(dst[sp:])))

 return dst

}

Build the rest

©2024, SonarSource S.A, Switzerland.

The Bug: pgx

func (src *Bind) Encode(dst []byte) []byte {

 dst = append(dst, 'B')

 sp := len(dst)

 // …

 pgio.SetInt32(dst[sp:], int32(len(dst[sp:])))

 return dst

}

Write size

©2024, SonarSource S.A, Switzerland.

The Bug: pgx

func (src *Bind) Encode(dst []byte) []byte {

 dst = append(dst, 'B')

 sp := len(dst)

 // …

 pgio.SetInt32(dst[sp:], int32(len(dst[sp:])))

 return dst

}

The message buffer

©2024, SonarSource S.A, Switzerland.

The Bug: pgx

func (src *Bind) Encode(dst []byte) []byte {

 dst = append(dst, 'B')

 sp := len(dst)

 // …

 pgio.SetInt32(dst[sp:], int32(len(dst[sp:])))

 return dst

}

Buffer length (int)

©2024, SonarSource S.A, Switzerland.

The Bug: pgx

func (src *Bind) Encode(dst []byte) []byte {

 dst = append(dst, 'B')

 sp := len(dst)

 // …

 pgio.SetInt32(dst[sp:], int32(len(dst[sp:])))

 return dst

}

Truncate to int32

©2024, SonarSource S.A, Switzerland.

Message Size Overflow

Size: 8 = 0x00000008

4 bytes length + 4 bytes data

Payload: "A" * 4

Message 1

Type Length Value

'Q' 00 00 00 08 "AAAA"

©2024, SonarSource S.A, Switzerland.

Size: 232-1 = 0xFFFFFFFF

4 bytes length + 232-5 bytes data

Payload: "A" * (2**32 - 5)

Message Size Overflow
Message 1

Type Length Value

'Q' FF FF FF FF "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA…"

©2024, SonarSource S.A, Switzerland.

Message Size Overflow

Size: 232+4 = 0x100000004

4 bytes length + 232 bytes data

Payload: "A" * (2**32)

Message 1

Type Length Value

'Q' 00 00 00 04 ""

? ? ?

'A' 'A' 'A' 'A' 'A' "AAAA…"

?

©2024, SonarSource S.A, Switzerland.

Message Size Overflow

Size: 232+4 = 0x100000004

4 bytes length + 232 bytes data

Payload: fakeMsg + "A" * (2**32 - len(fakeMsg))

Message 1

Type Length Value

'Q' 00 00 00 04 ""

Type Length Value…

'Q' 00 00 00 17 "DROP …"

Injected Message

©2024, SonarSource S.A, Switzerland.

Message Size Overflow - Zoomed Out

 Message 1

8 AAAA

©2024, SonarSource S.A, Switzerland.

Message Size Overflow - Zoomed Out

 … Message 1 …

232-1 AAA…

… Message 1 …

…AAA…

… Message 1 …

…AAA…

…AAA

… Message 1 …

©2024, SonarSource S.A, Switzerland.

Message Size Overflow - Zoomed Out

 … Message 1 …

232+8 AAA…

… Message 1 …

…AAA…

… Message 1 …

…AAA…

… Message 1 …

…AA

Application

©2024, SonarSource S.A, Switzerland.

Message Size Overflow - Zoomed Out

AAA…

… Garbage …

…AAA…

… Garbage …

…AAA…

… Garbage …

…AA

Message 1

8 AAAA

… Garbage …

©2024, SonarSource S.A, Switzerland.

Message Size Overflow - Zoomed Out

 Message 1

8 AAAA

… Message 3 …

…AAA…

… Message 3 …

…AAA…

Message 2

59 INSERT INTO admins (name, pw) VALUES ('pwned', 'pwned')

… Message 3 …

…AA

Message 3 …

232-51 AAAA…

©2024, SonarSource S.A, Switzerland.

Impact

● Inject entire SQL statements

○ Not limited to UNION, subqueries, etc.

○ Like stacked queries

● Read/write/delete all data in the DB

● Direct exfiltration is inconvenient

○ Application only processes the first DB response

©2024, SonarSource S.A, Switzerland.

How does it look in the real world?

©2024, SonarSource S.A, Switzerland.

How does it look in the real world?

id := "5831bfeb"

conn.QueryRow("SELECT * FROM users WHERE id = $1", id)

Type Length Value

'Q' 00 00 00 2e SELECT * FROM users WHERE id = '5831bfeb'\x00

©2024, SonarSource S.A, Switzerland.

How does it look in the real world?

id := strings.Repeat("A", 1<<32)

conn.QueryRow("SELECT * FROM users WHERE id = $1", id)

Type Length Value

'Q' 00 00 00 26 SELECT * FROM users WHERE id = 'AAAAAAAAAAAAAAAA…

0x26 = 38

©2024, SonarSource S.A, Switzerland.

How does it look in the real world?

id := strings.Repeat("A", 1<<32)

conn.QueryRow("SELECT * FROM users WHERE id = $1", id)

Type Length Value

'Q' 00 00 00 29 SELECT * FROM users WHERE id = 'AAAAAAAAAAAAAAAA…

How to know this offset?

Type Length

'Q' 00 00

©2024, SonarSource S.A, Switzerland.

Crafting a Payload

● Offset depends on the query

○ Where is the injection point?

○ How long is the query?

● Calculate the offset when query is known

● What if it's not?

©2024, SonarSource S.A, Switzerland.

Crafting a Payload: Magic Pattern

00000000: 5100 5100 5100 5100 5100 5100 5100 5100 Q.Q.Q.Q.Q.Q.Q.Q.

00000010: 5100 5100 5100 5100 5100 5100 5100 5100 Q.Q.Q.Q.Q.Q.Q.Q.

…

©2024, SonarSource S.A, Switzerland.

Crafting a Payload: Magic Pattern

00000000: 5100 5100 5100 5100 5100 5100 5100 5100 Q.Q.Q.Q.Q.Q.Q.Q.

00000010: 5100 5100 5100 5100 5100 5100 5100 5100 Q.Q.Q.Q.Q.Q.Q.Q.

…

©2024, SonarSource S.A, Switzerland.

Crafting a Payload: Magic Pattern

00000000: 5100 5100 5100 5100 5100 5100 5100 5100 Q.Q.Q.Q.Q.Q.Q.Q.

00000010: 5100 5100 5100 5100 5100 5100 5100 5100 Q.Q.Q.Q.Q.Q.Q.Q.

…

T Length Value

Q 0x510051 …

✅ ✅ ✅

©2024, SonarSource S.A, Switzerland.

Crafting a Payload: Magic Pattern

00000000: 5100 5100 5100 5100 5100 5100 5100 5100 Q.Q.Q.Q.Q.Q.Q.Q.

00000010: 5100 5100 5100 5100 5100 5100 5100 5100 Q.Q.Q.Q.Q.Q.Q.Q.

…

©2024, SonarSource S.A, Switzerland.

Crafting a Payload: Magic Pattern

00000000: 5100 5100 5100 5100 5100 5100 5100 5100 Q.Q.Q.Q.Q.Q.Q.Q.

00000010: 5100 5100 5100 5100 5100 5100 5100 5100 Q.Q.Q.Q.Q.Q.Q.Q.

…

T Length Value

? 0x51005100 …

❌ ❌ ✅

©2024, SonarSource S.A, Switzerland.

Crafting a Payload: Magic Pattern

00000000: 5100 5100 5100 5100 5100 5100 5100 5100 Q.Q.Q.Q.Q.Q.Q.Q.

00000010: 5100 5100 5100 5100 5100 5100 5100 5100 Q.Q.Q.Q.Q.Q.Q.Q.

…

● Success after ≤2 attempts!

○ 50% chance of success

○ Attack is repeatable, just change the offset

©2024, SonarSource S.A, Switzerland.

Vulnerable Libraries
Language Library Vulnerable? Exploitable? Fixed Versions

Go

pgx ✅ ✅ 4.18.2, 5.5.4
pg ✅ ✅ none
pgdriver ✅ ✅ none
pq ✅ ✅ none

C#/.NET Npgsql ✅ ✅ 4.0.14, 4.1.13, 5.0.18, 6.0.11, 7.0.7, 8.0.3

Java
pgjdbc ❌ ❌ -

pgjdbc-ng ✅ ❌ -

r2dbc-postgresql ✅ ❌ -

JS/TS

pg ✅ ❌ -

pg-promise ❌ ❌ -

pogi ✅ ❌ -

postgres ✅ ❌ -

@vercel/postgres ✅ ❌ -

©2024, SonarSource S.A, Switzerland.

Exploitable Applications

Vulnerable library

used
Has vulnerable

config

Vulnerable in
default config

©2024, SonarSource S.A, Switzerland.

Demo: Harbor

● Container registry

○ CNCF Graduate project

○ Part of VMware Tanzu Kubernetes

● Default configuration was vulnerable

● No authentication required

● Fixed in 2.11.0 by updating pgx [1]

[1] https://github.com/goharbor/harbor/pull/20139

https://github.com/goharbor/harbor/pull/20139

Case Study:

MongoDB

©2024, SonarSource S.A, Switzerland.

MongoDB Wire Protocol

● 4-byte length field

● Queries are BSON documents

○ Hierarchical objects

○ Serialized to TLV sections

messageLength requestID responseTo

17 00 00 00 00 00 00 00 00 00 00 00

opCode value

DD 07 00 00 …

©2024, SonarSource S.A, Switzerland.

The Bug: mongodb
async fn write_to<T: AsyncWrite + Send + Unpin>(&self, mut writer: T) -> Result<()> {

 let sections = self.get_sections_bytes();

 let total_length = Header::LENGTH

 + std::mem::size_of::<u32>()

 + sections.len()

 + /* ... */;

 let header = Header {

 length: total_length as i32,

 // ...

 };

 header.write_to(&mut writer).await?;

 writer.write_u32_le(self.flags.bits()).await?;

 writer.write_all(§ions).await?;

 // ...

}

©2024, SonarSource S.A, Switzerland.

The Bug: mongodb
async fn write_to<T: AsyncWrite + Send + Unpin>(&self, mut writer: T) -> Result<()> {

 let sections = self.get_sections_bytes();

 let total_length = Header::LENGTH

 + std::mem::size_of::<u32>()

 + sections.len()

 + /* ... */;

 let header = Header {

 length: total_length as i32,

 // ...

 };

 header.write_to(&mut writer).await?;

 writer.write_u32_le(self.flags.bits()).await?;

 writer.write_all(§ions).await?;

 // ...

}

Get content bytes

©2024, SonarSource S.A, Switzerland.

The Bug: mongodb
async fn write_to<T: AsyncWrite + Send + Unpin>(&self, mut writer: T) -> Result<()> {

 let sections = self.get_sections_bytes();

 let total_length = Header::LENGTH

 + std::mem::size_of::<u32>()

 + sections.len()

 + /* ... */;

 let header = Header {

 length: total_length as i32,

 // ...

 };

 header.write_to(&mut writer).await?;

 writer.write_u32_le(self.flags.bits()).await?;

 writer.write_all(§ions).await?;

 // ...

}

Calculate message size (usize)

©2024, SonarSource S.A, Switzerland.

The Bug: mongodb
async fn write_to<T: AsyncWrite + Send + Unpin>(&self, mut writer: T) -> Result<()> {

 let sections = self.get_sections_bytes();

 let total_length = Header::LENGTH

 + std::mem::size_of::<u32>()

 + sections.len()

 + /* ... */;

 let header = Header {

 length: total_length as i32,

 // ...

 };

 header.write_to(&mut writer).await?;

 writer.write_u32_le(self.flags.bits()).await?;

 writer.write_all(§ions).await?;

 // ...

}

Truncate to i32

©2024, SonarSource S.A, Switzerland.

Crafting a Payload

● Avoid bad bytes

○ Payload must be valid UTF-8

● Problem:

○ Message type (dd 07) is already invalid

○ Size fields can become invalid

©2024, SonarSource S.A, Switzerland.

Crafting a Payload

● Avoid bad bytes

○ Payload must be valid UTF-8

● Problem:

○ Message type (dd 07) is already invalid

○ Size fields can become invalid

● Solution:

○ Use metadata to create those bytes!

©2024, SonarSource S.A, Switzerland.

Crafting a Payload

Query:
{

 title: "The Wrath of Khan",

 genre: "SciFi",

 description: "...",

}

BSON Document:

4800 0000 0274 6974 6c65 0012 0000 0054 H....title.....T

6865 2057 7261 7468 206f 6620 4b68 616e he Wrath of Khan

0002 6765 6e72 6500 0600 0000 5363 6946 ..genre.....SciF

6900 0264 6573 6372 6970 7469 6f6e 0004 i..description..

0000 002e 2e2e 0000

 Length Type Key Value Other

©2024, SonarSource S.A, Switzerland.

Crafting a Payload

Query:
{

 title: "A" * (0x7dd - 1),

 genre: "SciFi",

 description: "...",

}

BSON Document:

1308 0000 0274 6974 6c65 00dd 0700 0054 H....title.....A

4141 4141 4141 ... 4141 4141 4141 AAAAA ... AAAAA

0002 6765 6e72 6500 0600 0000 5363 6946 ..genre.....SciF

6900 0264 6573 6372 6970 7469 6f6e 0004 i..description..

0000 002e 2e2e 0000

 Length Type Key Value Other

©2024, SonarSource S.A, Switzerland.

Vulnerable Libraries
Language Library Vulnerable? Exploitable? Fixed Version

Rust mongodb ✅ ✅ 2.8.2

Python pymongo ❌ ❌ -

Go mongo ❌ ❌ -

Java mongo-java-driver ❌ ❌ -

JavaScript mongodb ❌ ❌ -

● Sent advisory in February 2024

● mongodb fixed in March

Real-World
Applicability

©2024, SonarSource S.A, Switzerland.

Constraints

©2024, SonarSource S.A, Switzerland.

How Web Apps Handle Large Payloads

● Aren't apps limiting input sizes?

● Common protections:

○ Size-limiting reverse proxies

○ Default body size limits

○ Maximum JSON/form decode sizes

○ … and more

©2024, SonarSource S.A, Switzerland.

How Web Apps Handle Large Payloads

● Potential bypasses

○ Unprotected endpoints

○ Compression

○ WebSockets

○ Server-side creation

©2024, SonarSource S.A, Switzerland.

How Web Apps Handle Large Payloads

● Potential bypasses

○ Unprotected endpoints

○ Compression

○ WebSockets

○ Server-side creation

● No default limits

● Disabled limits

○ Harbor

©2024, SonarSource S.A, Switzerland.

How Web Apps Handle Large Payloads

● Potential bypasses

○ Unprotected endpoints

○ Compression

○ WebSockets

○ Server-side creation

● Some enforce size limits

before decompression

○ Nginx

○ Fastify

©2024, SonarSource S.A, Switzerland.

How Web Apps Handle Large Payloads

● Potential bypasses

○ Unprotected endpoints

○ Compression

○ WebSockets

○ Server-side creation

● Large message size

● Compression support

● Many filters don't apply

©2024, SonarSource S.A, Switzerland.

How Web Apps Handle Large Payloads

● Potential bypasses

○ Unprotected endpoints

○ Compression

○ WebSockets

○ Server-side creation

● Create strings on the server

○ SSRF, templates, …

● Depends on business logic

©2024, SonarSource S.A, Switzerland.

Language Comparison

● Silent integer overflows?

● How big can strings/buffers be?

©2024, SonarSource S.A, Switzerland.

Language Comparison: Integer Overflows

* Type system prevents overflows. Devs have to check for overflows, which leads to bugs

Language Silent Addition Overflow? Silent Serialization Overflow?

Go Yes N/A *

Java Yes N/A *

C# Yes N/A *

JS No Depends on impl.

Python No No

Rust In release builds N/A *

©2024, SonarSource S.A, Switzerland.

Language Comparison: Large Payloads

Only considering 64-bit versions.

* Depends on the implementation

Language Max. String Size Max. Buffer Size

Go > 232 > 232

Java 231-1 231-1

C# 231-1 > 232

JS 229-24 * > 232 *

Python > 232 > 232

Rust > 232 > 232

©2024, SonarSource S.A, Switzerland.

Real-World Applicability

● Can I send large payloads?

○ A lot of times, yes!

● Can integers silently overflow/truncate?

○ In many languages, yes!

● Can I exploit real-world apps with this?

○ Absolutely!

Future Research

©2024, SonarSource S.A, Switzerland.

Safety First: No DoS Please!

⚠
Do not send large payloads to third-party systems!

©2024, SonarSource S.A, Switzerland.

Research More!

● More protocols

○ Other databases

○ Caches, message queues, …

● Find more desync techniques

○ What about delimiters?

● More "large payload" methods

○ New ways to bypass limits

○ Generic server-side creation techniques

Application

Message
Queue

Database

Cache

Logging

Storage

…

©2024, SonarSource S.A, Switzerland.

Getting Started

Play a hands-on challenge!

"FLX-Lock" from Hack.lu CTF 2024

https://archive.fluxfingers.net
/2024/challenges/18.html

https://archive.fluxfingers.net/2024/challenges/18.html
https://archive.fluxfingers.net/2024/challenges/18.html

Conclusion

©2024, SonarSource S.A, Switzerland.

Takeaways

● Integer overflows are still relevant in memory-safe

languages

● Sending large amounts of data is feasible

● SQL injection isn't dead

○ If you can't hack it, just go a level deeper!

©2024, SonarSource S.A, Switzerland.

Thank you!
@Sonar_Research

@SonarResearch@infosec.exchange

https://sonarsource.com

@pspaul95

@pspaul@infosec.exchange

