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BI0 / BALAZS BUCSAY

e Trainer of this course

Originally from Hungary, living in London

e Over two decades of offensive security experience

Started learning assembly at the age of 13

e Software Reverse Engineer

15 years of research and consultancy

e Certifications: OSCE, OSCP, OSWP; Prev: GIAC GPEN, CREST CCT Inf




BI0 / BALAZS BUCSAY MANTRA

INFORMATION SECURITY

e Previously developed:
= Exploits for Windows and Linux applications
= Shellcode payloads for multiple architectures
= Kernel driver exploits

e Frequent speaker on IT-Security conferences:
= US - Washington DC, Atlanta, Honolulu
= Europe - UK, Belgium, Norway, Austria, Hungary...
= APAC - Australia, Singapore, Philippines




BI0 / BALAZS BUCSAY

e Hobbies:
= Travelling (been to 75+ countries)
= Hiking, kayaking, cycling
= [T Security

e |ovetolearn from others
o Kayaked the length of the Thames (300km)

MANTRA
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Twitter: @xoreipeip
e Mantra on Twitter: @mantrainfosec
Linkedin: https://www.linkedin.com/in/bucsayb/



https://twitter.com/xoreipeip
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https://www.linkedin.com/in/bucsayb/

MANTRA INFORMATION SECURITY

e Boutique consultancy approach
e Decades of experience and excellence

= Training delivery (Software Reverse Engineering training)
= Cloud, CI/CD, Kubernetes reviews

= Red Teaming, EASM, Infrastructure testing
= Web application and API assessments
= Reverse-engineering, embedded devices and exploit development

MANTRA
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e Full stack consultancy - from finding a bug until it gets fixed

https://mantrainfosec.com
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GROUND RULES

e Please silence your phones
o Take phone calls outside of the room and preferably in breaks

e The workshop might be heavy at some points, let's stop and recap what is missing




INTRODUCTION TO THE WORKSHOP R

e We are going to learn:
= A bit of theory behind Unicorn Engine
= How to script the API
= How to execute code platform independently
= How to map memory
= How to pass parameters to functions
= How to debug issues with our scripts
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INTRODUCTION TO THE WORKSHOP

e Prerequisite
= Proficiency in coding in a programming language
= Familiarity with Assembly language
= Competence in using Linux operating systems
= A computer capable of x64 virtualization
= VMW are Player installed on their computer
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SOFTWARE REVERSE ENGINEER COURSES ~ ~

e Incaseyou are interested in the full training:
= Software Reverse Engineering training

e Multiple courses (pick your level):
= Day 01-03: Beginner level (from scratch)
= Day 04-05: Intermediate level
= Day 06-10: Advanced level

e Find me after the workshop



https://mantrainfosec.com/training-sre.html

SETUP MANTRA

INFORMATION SECURITY

e |nstall VMWare Player
= Distributed with other materials
= Next, next, finish - install MS VC Redistributable if required
= Reboot if required
= Select FREE option - Non-commercial use only
e Open Virtual Machine in VMWare Player
e Select Linux and click on "Play virtual machine"
e Make sure you have the slides in PDF format
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UBUNTU LINUX VM

e Ubuntu Desktop VM, FOSS

e All necessary tools installed for this workshop

Challenges and solutions are also on the VM

Feel free to use this VM after the course for as long as you want
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VIRTUAL MACHINE SECURITY

e Credentials to log into the VMs:
= Username: training
= Password: training
Feel free to change the password - make sure you remember it
e The network interface is set to NAT - no incoming connections
Vanilla configuration, not hardened, might need security updates as well
e Please do not update during the workshop - could block you
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UNDERSTANDING AND FOLLOWING THE MATERIAL

e Reverse Engineering is a complex skill that requires low-level knowledge
e Don't worry if you don't get everything for the first time

e Lots of back and forth

e Check the slides if you need to clear-up something

e Feel free to ask questions instead of lagging behind




UNICORN ENGINE MANTRA

e Quick theory and then we start with the real deal
e Including:
= Learning the capabilities of the Unicorn API (Python)
Loading and running code
Calling functions
Hooking execution
= Passing function parameters
= efc.
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INFORMATION SECURITY

e QEMU is a generic and open-source machine emulator and virtualizer
e Stands for Quick EMUlator
e |tis capable to emulate multiple other architectures including:

= x86/x64

= ARM

= PowerPC

= RISC-V
e User-mode emulation: runs a binary, emulates with minimal environment
e System emulation: emulates a whole system including peripherals
e Supports Windows, macOS, Linux and other UNIX operating systems
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UNICORN ENGINE

Next Generation CPU Emulator

e Based on QEMU

It is capable to emulate code (multiple architecture)

e Provides an API for programming languages to create an environment and run code
= Supports: C, Python, Java, Go, .NET, Rust, ...

e Easy way to execute and debug code
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UNICORN ENGINE AS A SOLUTION

e Think of a scenario where you have a specific machine code

e This might be part of a program or just a snippet of code
Without having the right hardware, how would you execute it?
Without having a skeleton program, how would you execute it?
Unicorn Engine allows to execute snippets on *any™* architecture
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TOOLS TO USE:

e Text editor (recommended )
e Terminal (recommended )
e Disassembler/Decompiler (recommended )

e Thatis all we need
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LAB: UNICORN ENGINE INTRO

e Execute the script: ~/training/0O0start/O0start.py

e Read the code in Sublime

e |t creates an x86 environment and executes two instructions
o Attheend,it prints the register values

o Let'stake alook line by line
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LAB: UNICORN ENGINE INTRO

e Imports Unicorn Engine and x86 constants

from unicorn import *
from unicorn.x86_const import *
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LAB: UNICORN ENGINE INTRO

e Creates abinary string with two bytes
e These two bytes are x86 (Intel/AMD) machine code
e INCECX and DEC EDX

X86_CODE32 = b'"\x41\x4a" # INC ecx; DEC edx
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LAB: UNICORN ENGINE INTRO

e Creates avariable, which will be used later as base address

ADDRESS = 0x1000000

e Just a'"random" address
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LAB: UNICORN ENGINE INTRO

e Thisis where the interesting part starts
e x86 architecture emulation is initialised
e 2 Megabyte memory is mapped at base address

uc = Uc(UC_ARCH_X86, UC_MODE_32)
uc.mem_map (ADDRESS, 2 *x 1024 x 1024)
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LAB: UNICORN ENGINEINTRO ==

e The two instructions are written to the base address
o ECXregisterissetto0x1234
e EDXregister is set to 0x7890

uc.mem_write(ADDRESS, X86_CODE32)

uc.reg_write(UC_X86_REG_ECX, 0x1234)
uc.reg_write(UC_X86_REG_EDX, 0x7890)
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LAB: UNICORN ENGINE INTRO

e Emulation starts at base address

uc.emu_start (ADDRESS, ADDRESS + len(X86_ CODE32))

e Emulation stops at the end of the code (2 bytes later)




LAB: UNICORN ENGINE INTRO

e Registers are saved and printed in Python

uc.reg_read(UC_X86_REG_ECX)
uc.reg_read(UC_X86_REG_EDX)

r_ecx
r_edx

print(">>> ECX = 0Ox%x" %r_ecx)
print(">>> EDX = 0

MANTRA
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UNICORN ENGINE INTRO

e The two instructions executed

e Theresults were printed

It did not need a skeleton program to execute the instructions

e We could write machine code directly in Python and execute it right away
This might not seem to be useful, but Unicorn can do so much more!




LAB: UNICORN ENGINE O1CAESAR MANTRA

e Execute ~/training/Olcaesar/O1caesar
e |t prints the original and encoded string
o Use Ghidra to take a look at the decompiled code
= Execute: ~/training/tools/ghidra_11.1.2_ PUBLIC/ghidraRun
e Option 1: You could RE the caesar_cipher() function
e Option 2: You could look up what Caesar cipher is (and you should)
e Option 3: You could execute this function via Unicorn engine
e Let's go for the option 3




LAB: UNICORN ENGINE O1CAESAR

e Open the binary in Ghidra MANTRA

INFORMATION SECURITY

Import /home/training/training/01caesar/01caesar

Format: | Executable and Linking Format (ELF) |
Language: | x86:LE:64:default:gcc

Destination Folder: delmey/

Program Name: 01lcaesar

| Options... |

0K l | Cancel |

e Architecture: AMD64/Intel x64




LAB: UNICORN ENGINE O1CAESAR MANTRA

INFORMATION SECURITY

e Analyze the code with Ghidra

Analyze?

“ 01caesar has not been analyzed. Would you like to analyze it now?

Yes | No || No (Don't ask again) |




LAB: UNICORN ENGINE O1CAESAR

e Find the function and check the decompiled code:

¢ Decompile: caesar_cipher - (01caesar)

1
2|void caesar_cipher(long param_1,int param_2,1int param_3)
3
44
int 1ivarl;
int local c;

for (local_c = 0; local_c < param_3; local_c = Tocal_c + 1) {
if ((*(char *)(param_1 + local c) < "A') || ('Z' < *(char *)(param_1 + local c))) {
if (("" ' < *(char *)(param_1 + local c)) && (*(char *)(param_1 + local c) < '{")) {

1Varl = param_2 + *(char *)(param_l + local_c) + -0x61;
¥(char *)(param_1 + local c) = (char)ivarl + (char)(iVarl / Oxla) * -Oxla + 'a‘;
}
}
else {
1Varl = param_2 + *(char *)(param_l + local_c) + -0x41;
*(char *)(param_1 + local c) = (char)ivarl + (char)(ivarl / Oxla) * -Oxla + 'A';
}
}
20 return;
21}
22

MANTRA
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LAB: UNICORN ENGINE 01CAESAR

¢ Compare it to the source code ~/training/0Olcaesar/0Olcaesar.c MR/M\AT,NOL—!_EB{./T\Y
l? void caesar cipher(char *str, int offset, int length)
i; { for (int 1 = 0; 1 < length; ++1i)
;i : if (str[i] >= 'A' && str[i] <= 'Z'")
\ str(i] = (str[i] - 'A’ + offset) % 26 + 'A’;
4 ilse}if (str[i] >= 'a’ & str[i] <= 'z')

27 str[i] = (str[i] - 'a' + offset) % 26 + 'a’;




LAB: UNICORN ENGINE O1CAESAR

e Finally, check the assembly code. Make a note of the function's addre OAHNOJN_!;&(T\Y

caesar_cipher

f3 of le fa ENDBRG4

DOLOLLEd 55 PUSH RBP

0010118e 48 es MOV RBP, RSP

00101191 48 7d e8 MOV qword ptr [REP + local 20],RDI

00101195 89 ed MOV dword ptr [REFP + local 24],ESI
00101198 89 el MOV dword ptr [REFP + local 28],EDX
0010119b c7 fc MOV dword ptr [RBP + local c],0x0
00 00 00
001011la2 9 00 JMP LAB 0010129d
00




LAB: UNICORN ENGINE O1CAESAR

e Make a note of the function's end address: M{A\AMN—!_E&./T\Y

00101299 83 45 fc 01 ADD dword ptr [REP + local c],0Oxl

LAB 0010129d
0010129d 8b 45 fc MOV EAX,dword ptr [REP + local_c]
001012a0 3b 45 e0 CMP EAX,dword ptr [REP + local_28]
00101233 Of 8c fe JL LAB 001011a7

fe ff ff
001012a9 90 NOP
001012aa 90 NOP

N01012abh Sd POP
001012acfc3 RET
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LAB: UNICORN ENGINE 01CAESAR

¢ Open the following source in Sublime: ~/training/O1caesar/O1skeleton.py

e |dentify the insertion points that you need to figure out

e When properly configured, the code will run and print the same as the program does
e You can execute the script by: ~/training/O1caesar/0O1skeleton.py
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LAB: UNICORN ENGINE 01CAESAR

The insertion points should be filled out in logical order

This might not be sequential at all

e First the binary needs to be read into memory
= The path of the binary needs to be specified at

Then set a base address at
= This address can be anything, but it's better to have space before and after
m |et'sstick to 0x100000




LAB: UNICORN ENGINE O1CAESAR

Let's think about the memory layout
e We need to load the executable into memory
= How bigis the program?
= Make a note of the size in Kb
e We need some memory for stack operations
= Do we need a stack?
= Check Ghidra, does the assembly interact with the stack?
= Any ESP/RSP references? PUSH/POP?
e We need some memory for heap
= \We need to pass a pointer to the function
= The pointer should point to a string in memory
= Where do you want to put that string?

MANTRA
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LAB: UNICORN ENGINE 01CAESAR

e Filesize to be loaded

MANTRA

INFORMATION SECURITY

training@unicorn S ls -1la

total 36

drwxrwxr-x 2 training training 4096 Oct 1 15:01

drwxrwxr-x 8 training training 4096 Sep 8 19:42

-rwxrwxr-x 1 training training|16088 Sep 8 17:40 Olcaesar
-rw-rw-r-- 1 training training 1097 Sep 6 11:12 0lcaesar.c
-rW-rw-r-- 1 training training 1340 Sep 6 11:14 0lskeleton.py
-rw-rw-r-- 1 training training 28 Sep 8 17:49 secret.txt




LAB: UNICORN ENGINE O1CAESAR MANTRA

INFORMATION SECURITY

e Stack usage (POP/PUSH; RSP, RBP references)

caesar_cipher

00101189 le fa ENDBRG4

0010118d

0010118e eS MOV BP, RS

00101191 7d e8 MOV REBP§+ local 20],RDI

00101195 ed MOV dword ptr JREPR+ local 24],ESI

00101198 el MOV dword ptr JREFPJ+ local 28], EDX

0010118b fc MOV dword ptr JREPJ+ local c],0x0
00 00




LAB: UNICORN ENGINE 01CAESAR

e The memory layout that we build, should look like something like thism&hﬂ;&ﬁ\v

Address Region

0x0100000 Program code starts
[...]

OxO103FFF Program ends starts
0x0104000 Heap* starts

[...]

Ox0104FFF Heap* ends
0x0105000 Stack starts

[...]

Ox0105FFF Stack ends




LAB: UNICORN ENGINE O1CAESAR MANTRA

INFORMATION SECURITY

e Allocate/map more memory than you need ( )

= Calculate it in bytes, 2Mb should be enough
o Write the string argument to the heap, calculate address ( )
e Use the same address to read at the end of the program ( )
e Look up the corresponding calling convention

= What is used for the first argument? ( )

= What is used for the second argument? ( )

= What is used for the third argument? ( )

e Set the arguments (pointer for string, value for integers) ( )




LAB: UNICORN ENGINE O1CAESAR

e Calling Convention: System V AMDé64 ABI

Argument register overview

Argument type Registers
Integer/pointer arguments 1-6 | RDI, RSI, RDX, RCX, R8, R9

Floating point arguments 1-8 ' XMMO - XMM?7
Excess arguments Stack

Static chain pointer R10

MANTRA
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LAB: UNICORN ENGINE 01CAESAR

e Calculate the address for stack and set the right register ( )
e Look up the start and end addresses from Ghidra
= Find the first instruction of the function ( )
= Find the last instruction of the function ( )
° Stack grows and shrinks by instruction
= |t might happen that a reference points outside of stack (eg. EBP-0x10)
. Set ESP/RSP in the middle of the stack memory range
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LAB: UNICORN ENGINE 01CAESAR

e Runyour script, did it print the right string?

e Change your input string to something else

e You canrun the function standalone without modifying the binary!
e This comes really handy if you do not want to reimplement the code




LAB: UNICORN ENGINE O1CAESAR

e All done? Well done!

MANTRA
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rainti inicorn: S python3 Olcaesar.py
Encoded string: Khoor Xqlfruq!
training@unicorn: S cat secret. Xt
Ixkqox Fkclojxqflk Pbzrofqv

e Now, try to decode the content of secret.txt

e Anyissues? Let's solve them together!




UNICORN ENGINE ERRORS MANTRA

e Unicorn Engine might throw an error depending the issue we have
e |n case we dereference memory that was not mapped to the application:

= |nvalid memory write ( )
= Invalid memory read ( )
= Invalid memory fetch ( )

o Make sure:
= Enough memory was mapped
= Right address was used
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e Hooks are special functions that can be registered before execution
e These functions are called at different scenarios:

= UC_HOOK_CODE - Every instruction in a range
UC_HOOK_MEM _* - Memory related action
UC_HOOK_BLOCK - New block
UC_HOOK INSN - Particular instruction
UC_HOOK_INTR - Interrupts and syscalls




UNICORN ENGINE HOOKS MANTRA

INFORMATION SECURITY

e Hooks need to be added before emu_start() is called
e Every hook has a specific format:
= UC_ HOOK BLOCK and UC_HOOK_ CODE:

def hook _func(uc, address, size, user_data)

e Where:
= uc: initialized instance
= address: current address
= sjze: instruction or data size
= user_data: optional user data




UNICORN ENGINE HOOKS MANTRA

e Memory hooking format:
= UC_HOOK_MEM _*:

def hook _mem_access(uc, access, address, size, value, user_data)

e Where:

= access: access type (READ/WRITE/...)
= value: data value




LAB: UNICORN ENGINE MEMORY HOOK MANTRA

INFORMATION SECURITY

o Let's add a memory hook that prints the access type and address
e Add this code before emulation starts:

uc.hook add(UC_HOOK_MEM_WRITE, hook _mem_access)
uc.hook_add(UC_HOOK_MEM_READ, hook _mem_access)

e Add this function to the beginning of the file:

def hook_mem_access(uc, access, address, size, value, user_data):
print(" [*] Memory access: {} at 0x{}, data size = {}, data value = oOx{}"
.format(access, address, size, value))




LAB: UNICORN ENGINE MEMORY HOOK MANTRA

IIIIIIIIIIIIIIIIIII

e Output:




LAB: UNICORN ENGINE CODE HOOK MANTRA

INFORMATION SECURITY

o Let's add a code hook that prints the EIP/RIP at every instruction
e Add this code before emulation starts:

uc.hook _add(UC_HOOK_CODE, hook code, None,
ADDRESS + ©0x1189, ADDRESS + 0x12AC)

e Add this function to the beginning of the file:

def hook _code(uc, address, size, user_data):
print(" [x] Current RIP: 0x{}, instruction size = Ox{}"
.format(address, size))




LAB: UNICORN ENGINE CODE HOOK

e Output:

MANTRA

INFORMATION SECURITY

R— - m ™ 1A CEmT"N L J——— - - S ~ - . - - y
* ‘ eant RTE 1M 5 T CT e = XS
- \J - h . ANV JJL » - o N - ~ N -t

+
g
J
+
D

-J - . ] dAVOO L ’ LTS LT UL L L > LLC ' 4
* rrent RTE 1AEIPIE : )

g
X

urrent RIP: 0x1053235, instruction size = 2
<% ~ - r ™ » 1M0EC 27 snctTr o~ = - - I — - 1
i — —~ — | i ) 5 { — — X &8
- \J - L . ;| ) D J . ’ . 2> L Jo L = LLC
% rrant L D » 1AC2AA1 Tnctr -4 - - - - . 2
i [ —~ - i X i [ { [ — A
- \J - L . ;| I D A 4 . = L JL UL = LCLC .
% rroant 'I’. 1 Tnctr -4 - - - 2
i -y o | o i | i { -y — A 5
- \J - h * A » I s b > L U L L > LLEC »
" & —— - 4 mn ™ . 1 C2AAT s e - - - - - - - . §
i (- - - i X i 5 &4 { (= — X
- \J - 9 * 4 I S ’ - 2> L JiL UL o LK
r 1 — . r "™ . 1 e e ] 2 . . : - ad 1
*1 Current RIP: 0x1053353 truct 7e = OX
- \J - h . | S D DIDD - 2> L JiL UL > VL 4
r 1 - . N . 1 " 2 . . : - o d 1
* ¢ ant "‘I’ ) ¥« M C + 1 . 7 e - .
- \J - e * , > P> P ’ - 2> L Jo ULl > VL ,
r 1 — . - ™ . 1 -~ rr : . . . : - -t - 1
* { q ant » I,_ ) ¥« a1 - - \ + 1 1 \ e — .
- \J - e * ANV I, L 2 L Jis L AL > VL 4
- { { -4~ . » - 1 Fr
OO0 & K 9] X () T (ﬁ]
- J = L - . . o L J .
. <




MANTRA

LAB: UNICORN ENGINEBASICS

e We are capable to:
= Create a Python script to use Unicorn Engine
= Set and read registers values

= Execute selected parts of code
= Hook the code

= Debug our own script
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LAB: UNICORN ENGINE 02CIPHER

o Let's tackle a new challenge!

e Thistime, it's a substitution cipher

o Execute the binary: ~/training/O2cipher/O2cipher

e Loaditinto Ghidra and analyze it!

e If you're curious, check out the source code: ~/training/0O2cipher/02cipher.c
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LAB: UNICORN ENGINE O2CIPHER

e Find and decompile the function
e Retype (name might differ) to
e Make a note of the strings and copy them
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LAB: UNICORN ENGINE 02CIPHER

e Find the function
= How many arguments does it have?
= What is the start and end address?
= Does it use stack? Heap?
e Repeat this for the as well
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LAB: UNICORN ENGINE 02CIPHER

e Now that we have all the details we need, try to:

= create ascript for and the first string
= print the output and compare it to the binary's output
= create another script for and 2nd string

e Feel free touse 02skeleton.py!
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LAB: UNICORN ENGINE O3ENCRYPT

e Let's tackle another new challenge!

e Thistime, it's AES encryption (OpenSSL)

o Execute the binary: ~/training/03encrypt/O3encrypt

e |t generated and printed its AES key and created the following file:
= output_file.encrypted
= Check its content with xxd!
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LAB: UNICORN ENGINE O3ENCRYPT

e QOur task is to decrypt the secret.enc file
e To speed up the process:
= \We canread the encryptor's source: O3encrypt.c
= We can modify the 03skeleton.py source (generate key)
= We can modify the O3decrypt-skeleton.c source (decrypt file)
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LAB: UNICORN ENGINE O3ENCRYPT

e The encrypted file's content looks like this:
= byte0..7 - seed
= byte 8. X - encrypted content

e The seed is used to generate the key

e Let's find the key generation function




LAB: UNICORN ENGINE O3ENCRYPT MANTRA

IIIIIIIIIIIIIIIIIII

e Make a note of the |V:

argc_local = argc;

argv_local = argv;

ocal_20 = *(long *)(1n_FS OFFSET + 0x28);




LAB: UNICORN ENGINE O3ENCRYPT MANTRA

IIIIIIIIIIIIIIIIIII

e Function used to generate the key:

e 0X 101843 ;

v = 0x10185¢e;
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LAB: UNICORN ENGINE O3ENCRYPT

e Findthe function
= How many arguments does it have?
= What is the start and end address?
= Does it use stack? Heap?

e What is the size of the binary?
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LAB: UNICORN ENGINE O3ENCRYPT

e Now that we have all the details we need, try to:
= use skeleton script for
should come from the encrypted file
= print the after the function returned
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LAB: UNICORN ENGINE O3ENCRYPT

o After the key is generated:
= use the O3decrypt-skeleton.c source to write your decryptor
= specify the IV and the key in the source
= compile it according to the instruction in the file header

// compile: gcc @3decrypt-skeleton.c -0 @3decrypt —-1lssl —lcrypto
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FURTHER READING AND RESOURCES

e Tutorial for Unicorn

e Unicorn Engine Notes

e Unicorn Engine tutorial

e Unicorn Engine Reference (Unofficial)



https://www.unicorn-engine.org/docs/tutorial.html
https://github.com/alexander-hanel/unicorn-engine-notes
https://eternal.red/2018/unicorn-engine-tutorial/
https://hackmd.io/@K-atc/rJTUtGwuW?type=view
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AFTER THE WORKSHOP

e Well done! You've successfully covered the workshop material

e If you'd like to take your learning further:
= Continue with the following slides and explore more challenges
= Join us for the full SRE training: Software Reverse Engineering Training
= Follow us on twitter: @MantralnfoSec



https://mantrainfosec.com/training-sre.html
https://x.com/MantraInfoSec
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LAB: UNICORN ENGINE + CAPSTONE DISASSEMBLER

e Canyou create adisassembler?

e Sounds more complex thanitis

e Capstone is a lightweight multi-architecture disassembly framework
o APl for C, Python, Java, PowerShell, Rust, etc...

e Combining it with Unicorn Engine makes it really powerful

e Use Olcaesar and Olcaesar.py for this
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LAB: UNICORN ENGINE + CAPSTONE DISASSEMBLER

e First capstone needs to be imported:

from capstone import

o A Capstone instance needs to be created:

capmd = Cs(CS_ARCH_X86, CS_MODE_64)




LAB: UNICORN ENGINE + CAPSTONE DISASSEMBLER ~ MANTRA

e The following function needs to be added and the hook replaced:

def disas_single(data, address):
for i in capmd.disasm(data, address):
print ("0x%sx:\t%s\t%s" % (i.address, i.mnemonic, i.op_str))

def hook _code(uc, address, size, user_data):
print(" [*] Current RIP: Ox{}, instruction size = Ox{}".
format(address, size))
mem = uc.mem_read(address, size)
disas_single(bytes(mem), address)




LAB: UNICORN ENGINE + CAPSTONE DISASSEMBLER ~ MANTRA

IIIIIIIIIIIIIIIIIII

e Output:




MANTRA

INFORMATION SECURITY

LAB: 0BFUSCATED CIPHER: UNICORN

Find your target under: ~/training/extra/O5cipher-unicorn/O5cipher-unicorn
Executable deciphers a ciphered message

Create a Unicorn script that deciphers the message from decipher.this

e External function might cause an issue

e Patch them from Unicorn!

e Use mem_write() and assemblers to create machine code
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