DEFEATING ENCRYPTION
BY USING UNICORN ENGINE

MANTRA

INFORMATION SECURITY

»
*

b
2

EAS

Bucsay
Founder & CEO of
Mantra Information Security

Balazs

® o 0 0 0 0 0 0

//mantrainfosec.com

https

https://mantrainfosec.com/
https://mantrainfosec.com/

MANTRA

BI0 / BALAZS BUCSAY

e Trainer of this course

Originally from Hungary, living in London

e Over two decades of offensive security experience

Started learning assembly at the age of 13

e Software Reverse Engineer

15 years of research and consultancy

e Certifications: OSCE, OSCP, OSWP; Prev: GIAC GPEN, CREST CCT Inf

BI0 / BALAZS BUCSAY MANTRA

INFORMATION SECURITY

e Previously developed:
= Exploits for Windows and Linux applications
= Shellcode payloads for multiple architectures
= Kernel driver exploits

e Frequent speaker on IT-Security conferences:
= US - Washington DC, Atlanta, Honolulu
= Europe - UK, Belgium, Norway, Austria, Hungary...
= APAC - Australia, Singapore, Philippines

BI0 / BALAZS BUCSAY

e Hobbies:
= Travelling (been to 75+ countries)
= Hiking, kayaking, cycling
= [T Security

e |ovetolearn from others
o Kayaked the length of the Thames (300km)

MANTRA

INFORMATION SECURITY

Twitter: @xoreipeip
e Mantra on Twitter: @mantrainfosec
Linkedin: https://www.linkedin.com/in/bucsayb/

https://twitter.com/xoreipeip
https://twitter.com/mantrainfosec
https://www.linkedin.com/in/bucsayb/

MANTRA INFORMATION SECURITY

e Boutique consultancy approach
e Decades of experience and excellence

= Training delivery (Software Reverse Engineering training)
= Cloud, CI/CD, Kubernetes reviews

= Red Teaming, EASM, Infrastructure testing
= Web application and API assessments
= Reverse-engineering, embedded devices and exploit development

MANTRA

INFORMATION SECURITY

e Full stack consultancy - from finding a bug until it gets fixed

https://mantrainfosec.com

https://mantrainfosec.com/training-sre.html
https://mantrainfosec.com/

MANTRA

INFORMATION SECURITY

GROUND RULES

e Please silence your phones
o Take phone calls outside of the room and preferably in breaks

e The workshop might be heavy at some points, let's stop and recap what is missing

INTRODUCTION TO THE WORKSHOP R

e We are going to learn:
= A bit of theory behind Unicorn Engine
= How to script the API
= How to execute code platform independently
= How to map memory
= How to pass parameters to functions
= How to debug issues with our scripts

MANTRA

IIIIIIIIIIIIIIIIIII

INTRODUCTION TO THE WORKSHOP

e Prerequisite
= Proficiency in coding in a programming language
= Familiarity with Assembly language
= Competence in using Linux operating systems
= A computer capable of x64 virtualization
= VMW are Player installed on their computer

MANTRA

SOFTWARE REVERSE ENGINEER COURSES ~ ~

e Incaseyou are interested in the full training:
= Software Reverse Engineering training

e Multiple courses (pick your level):
= Day 01-03: Beginner level (from scratch)
= Day 04-05: Intermediate level
= Day 06-10: Advanced level

e Find me after the workshop

https://mantrainfosec.com/training-sre.html

SETUP MANTRA

INFORMATION SECURITY

e |nstall VMWare Player
= Distributed with other materials
= Next, next, finish - install MS VC Redistributable if required
= Reboot if required
= Select FREE option - Non-commercial use only
e Open Virtual Machine in VMWare Player
e Select Linux and click on "Play virtual machine"
e Make sure you have the slides in PDF format

MANTRA

INFORMATION SECURITY

UBUNTU LINUX VM

e Ubuntu Desktop VM, FOSS

e All necessary tools installed for this workshop

Challenges and solutions are also on the VM

Feel free to use this VM after the course for as long as you want

MANTRA

VIRTUAL MACHINE SECURITY

e Credentials to log into the VMs:
= Username: training
= Password: training
Feel free to change the password - make sure you remember it
e The network interface is set to NAT - no incoming connections
Vanilla configuration, not hardened, might need security updates as well
e Please do not update during the workshop - could block you

MANTRA

IIIIIIIIIIIIIIIIIII

UNDERSTANDING AND FOLLOWING THE MATERIAL

e Reverse Engineering is a complex skill that requires low-level knowledge
e Don't worry if you don't get everything for the first time

e Lots of back and forth

e Check the slides if you need to clear-up something

e Feel free to ask questions instead of lagging behind

UNICORN ENGINE MANTRA

e Quick theory and then we start with the real deal
e Including:
= Learning the capabilities of the Unicorn API (Python)
Loading and running code
Calling functions
Hooking execution
= Passing function parameters
= efc.

MANTRA

INFORMATION SECURITY

e QEMU is a generic and open-source machine emulator and virtualizer
e Stands for Quick EMUlator
e |tis capable to emulate multiple other architectures including:

= x86/x64

= ARM

= PowerPC

= RISC-V
e User-mode emulation: runs a binary, emulates with minimal environment
e System emulation: emulates a whole system including peripherals
e Supports Windows, macOS, Linux and other UNIX operating systems

MANTRA

INFORMATION SECURITY

UNICORN ENGINE

Next Generation CPU Emulator

e Based on QEMU

It is capable to emulate code (multiple architecture)

e Provides an API for programming languages to create an environment and run code
= Supports: C, Python, Java, Go, .NET, Rust, ...

e Easy way to execute and debug code

MANTRA

INFORMATION SECURITY

UNICORN ENGINE AS A SOLUTION

e Think of a scenario where you have a specific machine code

e This might be part of a program or just a snippet of code
Without having the right hardware, how would you execute it?
Without having a skeleton program, how would you execute it?
Unicorn Engine allows to execute snippets on *any™* architecture

MANTRA

INFORMATION SECURITY

TOOLS TO USE:

e Text editor (recommended)
e Terminal (recommended)
e Disassembler/Decompiler (recommended)

e Thatis all we need

MANTRA

IIIIIIIIIIIIIIIIIII

LAB: UNICORN ENGINE INTRO

e Execute the script: ~/training/0O0start/O0start.py

e Read the code in Sublime

e |t creates an x86 environment and executes two instructions
o Attheend,it prints the register values

o Let'stake alook line by line

MANTRA

INFORMATION SECURITY

LAB: UNICORN ENGINE INTRO

e Imports Unicorn Engine and x86 constants

from unicorn import *
from unicorn.x86_const import *

MANTRA

IIIIIIIIIIIIIIIIIII

LAB: UNICORN ENGINE INTRO

e Creates abinary string with two bytes
e These two bytes are x86 (Intel/AMD) machine code
e INCECX and DEC EDX

X86_CODE32 = b'"\x41\x4a" # INC ecx; DEC edx

MANTRA

IIIIIIIIIIIIIIIIIII

LAB: UNICORN ENGINE INTRO

e Creates avariable, which will be used later as base address

ADDRESS = 0x1000000

e Just a'"random" address

MANTRA

IIIIIIIIIIIIIIIIIII

LAB: UNICORN ENGINE INTRO

e Thisis where the interesting part starts
e x86 architecture emulation is initialised
e 2 Megabyte memory is mapped at base address

uc = Uc(UC_ARCH_X86, UC_MODE_32)
uc.mem_map (ADDRESS, 2 *x 1024 x 1024)

MANTRA

LAB: UNICORN ENGINEINTRO ==

e The two instructions are written to the base address
o ECXregisterissetto0x1234
e EDXregister is set to 0x7890

uc.mem_write(ADDRESS, X86_CODE32)

uc.reg_write(UC_X86_REG_ECX, 0x1234)
uc.reg_write(UC_X86_REG_EDX, 0x7890)

MANTRA

IIIIIIIIIIIIIIIIIII

LAB: UNICORN ENGINE INTRO

e Emulation starts at base address

uc.emu_start (ADDRESS, ADDRESS + len(X86_ CODE32))

e Emulation stops at the end of the code (2 bytes later)

LAB: UNICORN ENGINE INTRO

e Registers are saved and printed in Python

uc.reg_read(UC_X86_REG_ECX)
uc.reg_read(UC_X86_REG_EDX)

r_ecx
r_edx

print(">>> ECX = 0Ox%x" %r_ecx)
print(">>> EDX = 0

MANTRA

INFORMATION SECURITY

MANTRA

INFORMATION SECURITY

UNICORN ENGINE INTRO

e The two instructions executed

e Theresults were printed

It did not need a skeleton program to execute the instructions

e We could write machine code directly in Python and execute it right away
This might not seem to be useful, but Unicorn can do so much more!

LAB: UNICORN ENGINE O1CAESAR MANTRA

e Execute ~/training/Olcaesar/O1caesar
e |t prints the original and encoded string
o Use Ghidra to take a look at the decompiled code
= Execute: ~/training/tools/ghidra_11.1.2_ PUBLIC/ghidraRun
e Option 1: You could RE the caesar_cipher() function
e Option 2: You could look up what Caesar cipher is (and you should)
e Option 3: You could execute this function via Unicorn engine
e Let's go for the option 3

LAB: UNICORN ENGINE O1CAESAR

e Open the binary in Ghidra MANTRA

INFORMATION SECURITY

Import /home/training/training/01caesar/01caesar

Format: | Executable and Linking Format (ELF) |
Language: | x86:LE:64:default:gcc

Destination Folder: delmey/

Program Name: 01lcaesar

| Options... |

0K l | Cancel |

e Architecture: AMD64/Intel x64

LAB: UNICORN ENGINE O1CAESAR MANTRA

INFORMATION SECURITY

e Analyze the code with Ghidra

Analyze?

“ 01caesar has not been analyzed. Would you like to analyze it now?

Yes | No || No (Don't ask again) |

LAB: UNICORN ENGINE O1CAESAR

e Find the function and check the decompiled code:

¢ Decompile: caesar_cipher - (01caesar)

1
2|void caesar_cipher(long param_1,int param_2,1int param_3)
3
44
int 1ivarl;
int local c;

for (local_c = 0; local_c < param_3; local_c = Tocal_c + 1) {
if ((*(char *)(param_1 + local c) < "A') || ('Z' < *(char *)(param_1 + local c))) {
if (("" ' < *(char *)(param_1 + local c)) && (*(char *)(param_1 + local c) < '{")) {

1Varl = param_2 + *(char *)(param_l + local_c) + -0x61;
¥(char *)(param_1 + local c) = (char)ivarl + (char)(iVarl / Oxla) * -Oxla + 'a‘;
}
}
else {
1Varl = param_2 + *(char *)(param_l + local_c) + -0x41;
*(char *)(param_1 + local c) = (char)ivarl + (char)(ivarl / Oxla) * -Oxla + 'A';
}
}
20 return;
21}
22

MANTRA

INFORMATION SECURITY

LAB: UNICORN ENGINE 01CAESAR

¢ Compare it to the source code ~/training/0Olcaesar/0Olcaesar.c MR/M\AT,NOL—!_EB{./T\Y
l? void caesar cipher(char *str, int offset, int length)
i; { for (int 1 = 0; 1 < length; ++1i)
;i : if (str[i] >= 'A' && str[i] <= 'Z'")
\ str(i] = (str[i] - 'A’ + offset) % 26 + 'A’;
4 ilse}if (str[i] >= 'a’ & str[i] <= 'z')

27 str[i] = (str[i] - 'a' + offset) % 26 + 'a’;

LAB: UNICORN ENGINE O1CAESAR

e Finally, check the assembly code. Make a note of the function's addre OAHNOJN_!;&(T\Y

caesar_cipher

f3 of le fa ENDBRG4

DOLOLLEd 55 PUSH RBP

0010118e 48 es MOV RBP, RSP

00101191 48 7d e8 MOV qword ptr [REP + local 20],RDI

00101195 89 ed MOV dword ptr [REFP + local 24],ESI
00101198 89 el MOV dword ptr [REFP + local 28],EDX
0010119b c7 fc MOV dword ptr [RBP + local c],0x0
00 00 00
001011la2 9 00 JMP LAB 0010129d
00

LAB: UNICORN ENGINE O1CAESAR

e Make a note of the function's end address: M{A\AMN—!_E&./T\Y

00101299 83 45 fc 01 ADD dword ptr [REP + local c],0Oxl

LAB 0010129d
0010129d 8b 45 fc MOV EAX,dword ptr [REP + local_c]
001012a0 3b 45 e0 CMP EAX,dword ptr [REP + local_28]
00101233 Of 8c fe JL LAB 001011a7

fe ff ff
001012a9 90 NOP
001012aa 90 NOP

N01012abh Sd POP
001012acfc3 RET

MANTRA

INFORMATION SECURITY

LAB: UNICORN ENGINE 01CAESAR

¢ Open the following source in Sublime: ~/training/O1caesar/O1skeleton.py

e |dentify the insertion points that you need to figure out

e When properly configured, the code will run and print the same as the program does
e You can execute the script by: ~/training/O1caesar/0O1skeleton.py

MANTRA

LAB: UNICORN ENGINE 01CAESAR

The insertion points should be filled out in logical order

This might not be sequential at all

e First the binary needs to be read into memory
= The path of the binary needs to be specified at

Then set a base address at
= This address can be anything, but it's better to have space before and after
m |et'sstick to 0x100000

LAB: UNICORN ENGINE O1CAESAR

Let's think about the memory layout
e We need to load the executable into memory
= How bigis the program?
= Make a note of the size in Kb
e We need some memory for stack operations
= Do we need a stack?
= Check Ghidra, does the assembly interact with the stack?
= Any ESP/RSP references? PUSH/POP?
e We need some memory for heap
= \We need to pass a pointer to the function
= The pointer should point to a string in memory
= Where do you want to put that string?

MANTRA

INFORMATION SECURITY

LAB: UNICORN ENGINE 01CAESAR

e Filesize to be loaded

MANTRA

INFORMATION SECURITY

training@unicorn S ls -1la

total 36

drwxrwxr-x 2 training training 4096 Oct 1 15:01

drwxrwxr-x 8 training training 4096 Sep 8 19:42

-rwxrwxr-x 1 training training|16088 Sep 8 17:40 Olcaesar
-rw-rw-r-- 1 training training 1097 Sep 6 11:12 0lcaesar.c
-rW-rw-r-- 1 training training 1340 Sep 6 11:14 0lskeleton.py
-rw-rw-r-- 1 training training 28 Sep 8 17:49 secret.txt

LAB: UNICORN ENGINE O1CAESAR MANTRA

INFORMATION SECURITY

e Stack usage (POP/PUSH; RSP, RBP references)

caesar_cipher

00101189 le fa ENDBRG4

0010118d

0010118e eS MOV BP, RS

00101191 7d e8 MOV REBP§+ local 20],RDI

00101195 ed MOV dword ptr JREPR+ local 24],ESI

00101198 el MOV dword ptr JREFPJ+ local 28], EDX

0010118b fc MOV dword ptr JREPJ+ local c],0x0
00 00

LAB: UNICORN ENGINE 01CAESAR

e The memory layout that we build, should look like something like thism&hﬂ;&ﬁ\v

Address Region

0x0100000 Program code starts
[...]

OxO103FFF Program ends starts
0x0104000 Heap* starts

[...]

Ox0104FFF Heap* ends
0x0105000 Stack starts

[...]

Ox0105FFF Stack ends

LAB: UNICORN ENGINE O1CAESAR MANTRA

INFORMATION SECURITY

e Allocate/map more memory than you need ()

= Calculate it in bytes, 2Mb should be enough
o Write the string argument to the heap, calculate address ()
e Use the same address to read at the end of the program ()
e Look up the corresponding calling convention

= What is used for the first argument? ()

= What is used for the second argument? ()

= What is used for the third argument? ()

e Set the arguments (pointer for string, value for integers) ()

LAB: UNICORN ENGINE O1CAESAR

e Calling Convention: System V AMDé64 ABI

Argument register overview

Argument type Registers
Integer/pointer arguments 1-6 | RDI, RSI, RDX, RCX, R8, R9

Floating point arguments 1-8 ' XMMO - XMM?7
Excess arguments Stack

Static chain pointer R10

MANTRA

INFORMATION SECURITY

MANTRA

LAB: UNICORN ENGINE 01CAESAR

e Calculate the address for stack and set the right register ()
e Look up the start and end addresses from Ghidra
= Find the first instruction of the function ()
= Find the last instruction of the function ()
° Stack grows and shrinks by instruction
= |t might happen that a reference points outside of stack (eg. EBP-0x10)
. Set ESP/RSP in the middle of the stack memory range

MANTRA

IIIIIIIIIIIIIIIIIII

LAB: UNICORN ENGINE 01CAESAR

e Runyour script, did it print the right string?

e Change your input string to something else

e You canrun the function standalone without modifying the binary!
e This comes really handy if you do not want to reimplement the code

LAB: UNICORN ENGINE O1CAESAR

e All done? Well done!

MANTRA

IIIIIIIIIIIIIIIIIII

rainti inicorn: S python3 Olcaesar.py
Encoded string: Khoor Xqlfruq!
training@unicorn: S cat secret. Xt
Ixkqox Fkclojxqflk Pbzrofqv

e Now, try to decode the content of secret.txt

e Anyissues? Let's solve them together!

UNICORN ENGINE ERRORS MANTRA

e Unicorn Engine might throw an error depending the issue we have
e |n case we dereference memory that was not mapped to the application:

= |nvalid memory write ()
= Invalid memory read ()
= Invalid memory fetch ()

o Make sure:
= Enough memory was mapped
= Right address was used

MANTRA

UNIBURN ENGINE HuuKS INFORMATION SECURITY

e Hooks are special functions that can be registered before execution
e These functions are called at different scenarios:

= UC_HOOK_CODE - Every instruction in a range
UC_HOOK_MEM _* - Memory related action
UC_HOOK_BLOCK - New block
UC_HOOK INSN - Particular instruction
UC_HOOK_INTR - Interrupts and syscalls

UNICORN ENGINE HOOKS MANTRA

INFORMATION SECURITY

e Hooks need to be added before emu_start() is called
e Every hook has a specific format:
= UC_ HOOK BLOCK and UC_HOOK_ CODE:

def hook _func(uc, address, size, user_data)

e Where:
= uc: initialized instance
= address: current address
= sjze: instruction or data size
= user_data: optional user data

UNICORN ENGINE HOOKS MANTRA

e Memory hooking format:
= UC_HOOK_MEM _*:

def hook _mem_access(uc, access, address, size, value, user_data)

e Where:

= access: access type (READ/WRITE/...)
= value: data value

LAB: UNICORN ENGINE MEMORY HOOK MANTRA

INFORMATION SECURITY

o Let's add a memory hook that prints the access type and address
e Add this code before emulation starts:

uc.hook add(UC_HOOK_MEM_WRITE, hook _mem_access)
uc.hook_add(UC_HOOK_MEM_READ, hook _mem_access)

e Add this function to the beginning of the file:

def hook_mem_access(uc, access, address, size, value, user_data):
print(" [*] Memory access: {} at 0x{}, data size = {}, data value = oOx{}"
.format(access, address, size, value))

LAB: UNICORN ENGINE MEMORY HOOK MANTRA

IIIIIIIIIIIIIIIIIII

e Output:

LAB: UNICORN ENGINE CODE HOOK MANTRA

INFORMATION SECURITY

o Let's add a code hook that prints the EIP/RIP at every instruction
e Add this code before emulation starts:

uc.hook _add(UC_HOOK_CODE, hook code, None,
ADDRESS + ©0x1189, ADDRESS + 0x12AC)

e Add this function to the beginning of the file:

def hook _code(uc, address, size, user_data):
print(" [x] Current RIP: 0x{}, instruction size = Ox{}"
.format(address, size))

LAB: UNICORN ENGINE CODE HOOK

e Output:

MANTRA

INFORMATION SECURITY

R— - m ™ 1A CEmT"N L J——— - - S ~ - . - - y
* ‘ eant RTE 1M 5 T CT e = XS
- \J - h . ANV JJL » - o N - ~ N -t

+
g
J
+
D

-J - .] dAVOO L ’ LTS LT UL L L > LLC ' 4
* rrent RTE 1AEIPIE :)

g
X

urrent RIP: 0x1053235, instruction size = 2
<% ~ - r ™ » 1M0EC 27 snctTr o~ = - - I — - 1
i — —~ — | i) 5 { — — X &8
- \J - L . ;|) D J . ’ . 2> L Jo L = LLC
% rrant L D » 1AC2AA1 Tnctr -4 - - - - . 2
i [—~ - i X i [{ [— A
- \J - L . ;| I D A 4 . = L JL UL = LCLC .
% rroant 'I’. 1 Tnctr -4 - - - 2
i -y o | o i | i { -y — A 5
- \J - h * A » I s b > L U L L > LLEC »
" & —— - 4 mn ™ . 1 C2AAT s e - - - - - - - . §
i (- - - i X i 5 &4 { (= — X
- \J - 9 * 4 I S ’ - 2> L JiL UL o LK
r 1 — . r "™ . 1 e e] 2 . . : - ad 1
*1 Current RIP: 0x1053353 truct 7e = OX
- \J - h . | S D DIDD - 2> L JiL UL > VL 4
r 1 - . N . 1 " 2 . . : - o d 1
* ¢ ant "‘I’) ¥« M C + 1 . 7 e - .
- \J - e * , > P> P ’ - 2> L Jo ULl > VL ,
r 1 — . - ™ . 1 -~ rr : . . . : - -t - 1
* { q ant » I,_) ¥« a1 - - \ + 1 1 \ e — .
- \J - e * ANV I, L 2 L Jis L AL > VL 4
- { { -4~ . » - 1 Fr
OO0 & K 9] X () T (ﬁ]
- J = L - . . o L J .
. <

MANTRA

LAB: UNICORN ENGINEBASICS

e We are capable to:
= Create a Python script to use Unicorn Engine
= Set and read registers values

= Execute selected parts of code
= Hook the code

= Debug our own script

MANTRA

IIIIIIIIIIIIIIIIIII

LAB: UNICORN ENGINE 02CIPHER

o Let's tackle a new challenge!

e Thistime, it's a substitution cipher

o Execute the binary: ~/training/O2cipher/O2cipher

e Loaditinto Ghidra and analyze it!

e If you're curious, check out the source code: ~/training/0O2cipher/02cipher.c

MANTRA

IIIIIIIIIIIIIIIIIII

LAB: UNICORN ENGINE O2CIPHER

e Find and decompile the function
e Retype (name might differ) to
e Make a note of the strings and copy them

MANTRA

IIIIIIIIIIIIIIIIIII

LAB: UNICORN ENGINE 02CIPHER

e Find the function
= How many arguments does it have?
= What is the start and end address?
= Does it use stack? Heap?
e Repeat this for the as well

MANTRA

IIIIIIIIIIIIIIIIIII

LAB: UNICORN ENGINE 02CIPHER

e Now that we have all the details we need, try to:

= create ascript for and the first string
= print the output and compare it to the binary's output
= create another script for and 2nd string

e Feel free touse 02skeleton.py!

MANTRA

IIIIIIIIIIIIIIIIIII

LAB: UNICORN ENGINE O3ENCRYPT

e Let's tackle another new challenge!

e Thistime, it's AES encryption (OpenSSL)

o Execute the binary: ~/training/03encrypt/O3encrypt

e |t generated and printed its AES key and created the following file:
= output_file.encrypted
= Check its content with xxd!

MANTRA

IIIIIIIIIIIIIIIIIII

LAB: UNICORN ENGINE O3ENCRYPT

e QOur task is to decrypt the secret.enc file
e To speed up the process:
= \We canread the encryptor's source: O3encrypt.c
= We can modify the 03skeleton.py source (generate key)
= We can modify the O3decrypt-skeleton.c source (decrypt file)

MANTRA

IIIIIIIIIIIIIIIIIII

LAB: UNICORN ENGINE O3ENCRYPT

e The encrypted file's content looks like this:
= byte0..7 - seed
= byte 8. X - encrypted content

e The seed is used to generate the key

e Let's find the key generation function

LAB: UNICORN ENGINE O3ENCRYPT MANTRA

IIIIIIIIIIIIIIIIIII

e Make a note of the |V:

argc_local = argc;

argv_local = argv;

ocal_20 = *(long *)(1n_FS OFFSET + 0x28);

LAB: UNICORN ENGINE O3ENCRYPT MANTRA

IIIIIIIIIIIIIIIIIII

e Function used to generate the key:

e 0X 101843 ;

v = 0x10185¢e;

MANTRA

IIIIIIIIIIIIIIIIIII

LAB: UNICORN ENGINE O3ENCRYPT

e Findthe function
= How many arguments does it have?
= What is the start and end address?
= Does it use stack? Heap?

e What is the size of the binary?

MANTRA

IIIIIIIIIIIIIIIIIII

LAB: UNICORN ENGINE O3ENCRYPT

e Now that we have all the details we need, try to:
= use skeleton script for
should come from the encrypted file
= print the after the function returned

MANTRA

IIIIIIIIIIIIIIIIIII

LAB: UNICORN ENGINE O3ENCRYPT

o After the key is generated:
= use the O3decrypt-skeleton.c source to write your decryptor
= specify the IV and the key in the source
= compile it according to the instruction in the file header

// compile: gcc @3decrypt-skeleton.c -0 @3decrypt —-1lssl —lcrypto

MANTRA

IIIIIIIIIIIIIIIIIII

FURTHER READING AND RESOURCES

e Tutorial for Unicorn

e Unicorn Engine Notes

e Unicorn Engine tutorial

e Unicorn Engine Reference (Unofficial)

https://www.unicorn-engine.org/docs/tutorial.html
https://github.com/alexander-hanel/unicorn-engine-notes
https://eternal.red/2018/unicorn-engine-tutorial/
https://hackmd.io/@K-atc/rJTUtGwuW?type=view

MANTRA

INFORMATION SECURITY

AFTER THE WORKSHOP

e Well done! You've successfully covered the workshop material

e If you'd like to take your learning further:
= Continue with the following slides and explore more challenges
= Join us for the full SRE training: Software Reverse Engineering Training
= Follow us on twitter: @MantralnfoSec

https://mantrainfosec.com/training-sre.html
https://x.com/MantraInfoSec

MANTRA

LAB: UNICORN ENGINE + CAPSTONE DISASSEMBLER

e Canyou create adisassembler?

e Sounds more complex thanitis

e Capstone is a lightweight multi-architecture disassembly framework
o APl for C, Python, Java, PowerShell, Rust, etc...

e Combining it with Unicorn Engine makes it really powerful

e Use Olcaesar and Olcaesar.py for this

MANTRA

IIIIIIIIIIIIIIIIIII

LAB: UNICORN ENGINE + CAPSTONE DISASSEMBLER

e First capstone needs to be imported:

from capstone import

o A Capstone instance needs to be created:

capmd = Cs(CS_ARCH_X86, CS_MODE_64)

LAB: UNICORN ENGINE + CAPSTONE DISASSEMBLER ~ MANTRA

e The following function needs to be added and the hook replaced:

def disas_single(data, address):
for i in capmd.disasm(data, address):
print ("0x%sx:\t%s\t%s" % (i.address, i.mnemonic, i.op_str))

def hook _code(uc, address, size, user_data):
print(" [*] Current RIP: Ox{}, instruction size = Ox{}".
format(address, size))
mem = uc.mem_read(address, size)
disas_single(bytes(mem), address)

LAB: UNICORN ENGINE + CAPSTONE DISASSEMBLER ~ MANTRA

IIIIIIIIIIIIIIIIIII

e Output:

MANTRA

INFORMATION SECURITY

LAB: 0BFUSCATED CIPHER: UNICORN

Find your target under: ~/training/extra/O5cipher-unicorn/O5cipher-unicorn
Executable deciphers a ciphered message

Create a Unicorn script that deciphers the message from decipher.this

e External function might cause an issue

e Patch them from Unicorn!

e Use mem_write() and assemblers to create machine code

AT

838
.

‘:‘o"

Ining

Tra

' INng
//mantrainfosec.com

50000
B0 OO
co o
SG00GO000L
SEGO0000

°

°

5000000 QO
cs0000000 0 0 0

es0000000 0 0 0

000000000000 0 0 o

u

0000000000000 0 0 o

f

®0000000000 0 0

NTRA
ineer

Reverse Eng

;
https

I
ar

B
°

Jo
tw

Sof

https://mantrainfosec.com/training-sre.html
https://mantrainfosec.com/

