
DEFEATING ENCRYPTIONDEFEATING ENCRYPTION
BY USING UNICORN ENGINEBY USING UNICORN ENGINE

WORKSHOPWORKSHOP

Balázs Bucsay

Founder & CEO of
Mantra Information Security

https://mantrainfosec.com

https://mantrainfosec.com/
https://mantrainfosec.com/

BIO / BALÁZS BUCSAYBIO / BALÁZS BUCSAY
Trainer of this course
Originally from Hungary, living in London
Over two decades of offensive security experience
Started learning assembly at the age of 13
Software Reverse Engineer
15 years of research and consultancy
Certi�cations: OSCE, OSCP, OSWP; Prev: GIAC GPEN, CREST CCT Inf

BIO / BALÁZS BUCSAYBIO / BALÁZS BUCSAY
Previously developed:

Exploits for Windows and Linux applications
Shellcode payloads for multiple architectures
Kernel driver exploits

Frequent speaker on IT-Security conferences:
US - Washington DC, Atlanta, Honolulu
Europe - UK, Belgium, Norway, Austria, Hungary...
APAC - Australia, Singapore, Philippines

BIO / BALÁZS BUCSAYBIO / BALÁZS BUCSAY
Hobbies:

Travelling (been to 75+ countries)
Hiking, kayaking, cycling
IT Security

Love to learn from others
Kayaked the length of the Thames (300km)

Twitter:
Mantra on Twitter:
Linkedin:

@xoreipeip
@mantrainfosec

https://www.linkedin.com/in/bucsayb/

https://twitter.com/xoreipeip
https://twitter.com/mantrainfosec
https://www.linkedin.com/in/bucsayb/

MANTRA INFORMATION SECURITYMANTRA INFORMATION SECURITY
Boutique consultancy approach
Decades of experience and excellence

Training delivery ()
Cloud, CI/CD, Kubernetes reviews
Red Teaming, EASM, Infrastructure testing
Web application and API assessments
Reverse-engineering, embedded devices and exploit development
...

Full stack consultancy - from �nding a bug until it gets �xed

Software Reverse Engineering training

https://mantrainfosec.com

https://mantrainfosec.com/training-sre.html
https://mantrainfosec.com/

GROUND RULESGROUND RULES
Please silence your phones
Take phone calls outside of the room and preferably in breaks
Interaction is encouraged, please ask as many questions as you'd like
The workshop might be heavy at some points, let's stop and recap what is missing

INTRODUCTION TO THE WORKSHOPINTRODUCTION TO THE WORKSHOP
We are going to learn:

A bit of theory behind Unicorn Engine
How to script the API
How to execute code platform independently
How to map memory
How to pass parameters to functions
How to debug issues with our scripts

INTRODUCTION TO THE WORKSHOPINTRODUCTION TO THE WORKSHOP
Prerequisite

Pro�ciency in coding in a programming language
Familiarity with Assembly language
Competence in using Linux operating systems
A computer capable of x64 virtualization
VMWare Player installed on their computer

SOFTWARE REVERSE ENGINEER COURSESSOFTWARE REVERSE ENGINEER COURSES
In case you are interested in the full training:

Multiple courses (pick your level):
Day 01-03: Beginner level (from scratch)
Day 04-05: Intermediate level
Day 06-10: Advanced level

Find me after the workshop

Software Reverse Engineering training

https://mantrainfosec.com/training-sre.html

SETUPSETUP
Install VMWare Player

Distributed with other materials
Next, next, �nish - install MS VC Redistributable if required
Reboot if required
Select FREE option - Non-commercial use only

Open Virtual Machine in VMWare Player
Select Linux and click on "Play virtual machine"
Make sure you have the slides in PDF format
Make sure you click on COPIED not moved if VMWare Player asks

UBUNTU LINUX VMUBUNTU LINUX VM
Ubuntu Desktop VM, FOSS
All necessary tools installed for this workshop
Challenges and solutions are also on the VM
Feel free to use this VM after the course for as long as you want

VIRTUAL MACHINE SECURITYVIRTUAL MACHINE SECURITY
Credentials to log into the VMs:

Username: training
Password: training

Feel free to change the password - make sure you remember it
The network interface is set to NAT - no incoming connections
Vanilla con�guration, not hardened, might need security updates as well
Please do not update during the workshop - could block you

UNDERSTANDING AND FOLLOWING THE MATERIALUNDERSTANDING AND FOLLOWING THE MATERIAL
Reverse Engineering is a complex skill that requires low-level knowledge
Don't worry if you don't get everything for the �rst time
Lots of back and forth
Check the slides if you need to clear-up something
Feel free to ask questions instead of lagging behind

UNICORN ENGINEUNICORN ENGINE
Quick theory and then we start with the real deal
Including:

Learning the capabilities of the Unicorn API (Python)
Loading and running code
Calling functions
Hooking execution
Passing function parameters
etc.

QEMUQEMU
QEMU is a generic and open-source machine emulator and virtualizer
Stands for Quick EMUlator
It is capable to emulate multiple other architectures including:

x86/x64
ARM
PowerPC
RISC-V
...

User-mode emulation: runs a binary, emulates with minimal environment
System emulation: emulates a whole system including peripherals
Supports Windows, macOS, Linux and other UNIX operating systems

UNICORN ENGINEUNICORN ENGINE
Next Generation CPU Emulator
Based on QEMU
It is capable to emulate code (multiple architecture)
Provides an API for programming languages to create an environment and run code

Supports: C, Python, Java, Go, .NET, Rust, ...
Easy way to execute and debug code

UNICORN ENGINE AS A SOLUTIONUNICORN ENGINE AS A SOLUTION
Think of a scenario where you have a speci�c machine code
This might be part of a program or just a snippet of code
Without having the right hardware, how would you execute it?
Without having a skeleton program, how would you execute it?
Unicorn Engine allows to execute snippets on *any* architecture

TOOLS TO USE:TOOLS TO USE:
Text editor (recommended Sublime)
Terminal (recommended Terminator)
Disassembler/Decompiler (recommended Ghidra)

That is all we need

LAB: UNICORN ENGINE INTROLAB: UNICORN ENGINE INTRO
Execute the script: python3 ~/training/00start/00start.py
Read the code in Sublime
It creates an x86 environment and executes two instructions
At the end, it prints the register values
Let's take a look line by line

LAB: UNICORN ENGINE INTROLAB: UNICORN ENGINE INTRO
Imports Unicorn Engine and x86 constants

from unicorn import *
from unicorn.x86_const import *

LAB: UNICORN ENGINE INTROLAB: UNICORN ENGINE INTRO
Creates a binary string with two bytes
These two bytes are x86 (Intel/AMD) machine code
INC ECX and DEC EDX

X86_CODE32 = b"\x41\x4a" # INC ecx; DEC edx

LAB: UNICORN ENGINE INTROLAB: UNICORN ENGINE INTRO
Creates a variable, which will be used later as base address

Just a "random" address

ADDRESS = 0x1000000

LAB: UNICORN ENGINE INTROLAB: UNICORN ENGINE INTRO
This is where the interesting part starts
x86 architecture emulation is initialised
2 Megabyte memory is mapped at base address

uc = Uc(UC_ARCH_X86, UC_MODE_32)
uc.mem_map(ADDRESS, 2 * 1024 * 1024)

LAB: UNICORN ENGINE INTROLAB: UNICORN ENGINE INTRO
The two instructions are written to the base address
ECX register is set to 0x1234
EDX register is set to 0x7890

uc.mem_write(ADDRESS, X86_CODE32)

uc.reg_write(UC_X86_REG_ECX, 0x1234)
uc.reg_write(UC_X86_REG_EDX, 0x7890)

LAB: UNICORN ENGINE INTROLAB: UNICORN ENGINE INTRO
Emulation starts at base address

Emulation stops at the end of the code (2 bytes later)

uc.emu_start(ADDRESS, ADDRESS + len(X86_CODE32))

LAB: UNICORN ENGINE INTROLAB: UNICORN ENGINE INTRO
Registers are saved and printed in Python

r_ecx = uc.reg_read(UC_X86_REG_ECX)
r_edx = uc.reg_read(UC_X86_REG_EDX)

print(">>> ECX = 0x%x" %r_ecx)
print(">>> EDX = 0x%x" %r_edx)

UNICORN ENGINE INTROUNICORN ENGINE INTRO
The two instructions executed
The results were printed
It did not need a skeleton program to execute the instructions
We could write machine code directly in Python and execute it right away
This might not seem to be useful, but Unicorn can do so much more!

LAB: UNICORN ENGINE 01CAESARLAB: UNICORN ENGINE 01CAESAR
Execute ~/training/01caesar/01caesar
It prints the original and encoded string
Use Ghidra to take a look at the decompiled code

Execute: ~/training/tools/ghidra_11.1.2_PUBLIC/ghidraRun
Option 1: You could RE the caesar_cipher() function
Option 2: You could look up what Caesar cipher is (and you should)
Option 3: You could execute this function via Unicorn engine
Let's go for the option 3

LAB: UNICORN ENGINE 01CAESARLAB: UNICORN ENGINE 01CAESAR
Open the binary in Ghidra

Architecture: AMD64/Intel x64

LAB: UNICORN ENGINE 01CAESARLAB: UNICORN ENGINE 01CAESAR
Analyze the code with Ghidra

LAB: UNICORN ENGINE 01CAESARLAB: UNICORN ENGINE 01CAESAR
Find the function and check the decompiled code:

LAB: UNICORN ENGINE 01CAESARLAB: UNICORN ENGINE 01CAESAR
Compare it to the source code ~/training/01caesar/01caesar.c

LAB: UNICORN ENGINE 01CAESARLAB: UNICORN ENGINE 01CAESAR
Finally, check the assembly code. Make a note of the function's address:

LAB: UNICORN ENGINE 01CAESARLAB: UNICORN ENGINE 01CAESAR
Make a note of the function's end address:

LAB: UNICORN ENGINE 01CAESARLAB: UNICORN ENGINE 01CAESAR
Open the following source in Sublime: ~/training/01caesar/01skeleton.py
Identify the [HERE] insertion points that you need to �gure out
When properly con�gured, the code will run and print the same as the program does
You can execute the script by: python3 ~/training/01caesar/01skeleton.py

LAB: UNICORN ENGINE 01CAESARLAB: UNICORN ENGINE 01CAESAR
The insertion points should be �lled out in logical order
This might not be sequential at all
First the binary needs to be read into memory

The path of the binary needs to be speci�ed at line 6
Then set a base address at line 10

This address can be anything, but it's better to have space before and after
Let's stick to 0x100000

LAB: UNICORN ENGINE 01CAESARLAB: UNICORN ENGINE 01CAESAR
Let's think about the memory layout
We need to load the executable into memory

How big is the program?
Make a note of the size in Kb

We need some memory for stack operations
Do we need a stack?
Check Ghidra, does the assembly interact with the stack?
Any ESP/RSP references? PUSH/POP?

We need some memory for heap
We need to pass a pointer to the function
The pointer should point to a string in memory
Where do you want to put that string?

LAB: UNICORN ENGINE 01CAESARLAB: UNICORN ENGINE 01CAESAR
Filesize to be loaded

LAB: UNICORN ENGINE 01CAESARLAB: UNICORN ENGINE 01CAESAR
Stack usage (POP/PUSH; RSP, RBP references)

LAB: UNICORN ENGINE 01CAESARLAB: UNICORN ENGINE 01CAESAR
The memory layout that we build, should look like something like this:

Address Region

0x0100000 Program code starts

[...]

0x0103FFF Program ends starts

0x0104000 Heap* starts

[...]

0x0104FFF Heap* ends

0x0105000 Stack starts

[...]

0x0105FFF Stack ends

LAB: UNICORN ENGINE 01CAESARLAB: UNICORN ENGINE 01CAESAR
Allocate/map more memory than you need (line 16)

Calculate it in bytes, 2Mb should be enough
Write the string argument to the heap, calculate address (line 25)
Use the same address to read at the end of the program (line 37)
Look up the corresponding calling convention

What is used for the �rst argument? (line 26)
What is used for the second argument? (line 27)
What is used for the third argument? (line 28)

Set the arguments (pointer for string, value for integers) (line 26, 27, 28)

LAB: UNICORN ENGINE 01CAESARLAB: UNICORN ENGINE 01CAESAR
Calling Convention: System V AMD64 ABI

LAB: UNICORN ENGINE 01CAESARLAB: UNICORN ENGINE 01CAESAR
Calculate the address for stack and set the right register (line 30)
Look up the start and end addresses from Ghidra

Find the �rst instruction of the function (line 34)
Find the last instruction of the function (line 34)

Note: Stack grows and shrinks by instruction
It might happen that a reference points outside of stack (eg. EBP-0x10)

Protip: Set ESP/RSP in the middle of the stack memory range

LAB: UNICORN ENGINE 01CAESARLAB: UNICORN ENGINE 01CAESAR
Run your script, did it print the right string?
Change your input string to something else
You can run the function standalone without modifying the binary!
This comes really handy if you do not want to reimplement the code

LAB: UNICORN ENGINE 01CAESARLAB: UNICORN ENGINE 01CAESAR
All done? Well done!

Now, try to decode the content of secret.txt

Any issues? Let's solve them together!

UNICORN ENGINE ERRORSUNICORN ENGINE ERRORS
Unicorn Engine might throw an error depending the issue we have
In case we dereference memory that was not mapped to the application:

Invalid memory write (UC_ERR_WRITE_UNMAPPED)
Invalid memory read (UC_ERR_READ_UNMAPPED)
Invalid memory fetch (UC_ERR_FETCH_UNMAPPED)

Make sure:
Enough memory was mapped
Right address was used

UNICORN ENGINE HOOKSUNICORN ENGINE HOOKS
Hooks are special functions that can be registered before execution
These functions are called at different scenarios:

UC_HOOK_CODE - Every instruction in a range
UC_HOOK_MEM_* - Memory related action
UC_HOOK_BLOCK - New block
UC_HOOK_INSN - Particular instruction
UC_HOOK_INTR - Interrupts and syscalls

UNICORN ENGINE HOOKSUNICORN ENGINE HOOKS
Hooks need to be added before emu_start() is called
Every hook has a speci�c format:

UC_HOOK_BLOCK and UC_HOOK_CODE:

Where:
uc: initialized instance
address: current address
size: instruction or data size
user_data: optional user data

def hook_func(uc, address, size, user_data)

UNICORN ENGINE HOOKSUNICORN ENGINE HOOKS
Memory hooking format:

UC_HOOK_MEM_*:

Where:
...
access: access type (READ/WRITE/...)
value: data value

def hook_mem_access(uc, access, address, size, value, user_data)

LAB: UNICORN ENGINE MEMORY HOOKLAB: UNICORN ENGINE MEMORY HOOK
Let's add a memory hook that prints the access type and address
Add this code before emulation starts:

Add this function to the beginning of the �le:

uc.hook_add(UC_HOOK_MEM_WRITE, hook_mem_access)
uc.hook_add(UC_HOOK_MEM_READ, hook_mem_access)

def hook_mem_access(uc, access, address, size, value, user_data):
 print("[*] Memory access: {} at 0x{}, data size = {}, data value = 0x{}"
 .format(access, address, size, value))

LAB: UNICORN ENGINE MEMORY HOOKLAB: UNICORN ENGINE MEMORY HOOK
Output:

LAB: UNICORN ENGINE CODE HOOKLAB: UNICORN ENGINE CODE HOOK
Let's add a code hook that prints the EIP/RIP at every instruction
Add this code before emulation starts:

Add this function to the beginning of the �le:

uc.hook_add(UC_HOOK_CODE, hook_code, None,
ADDRESS + 0x1189, ADDRESS + 0x12AC)

def hook_code(uc, address, size, user_data):
 print("[*] Current RIP: 0x{}, instruction size = 0x{}"

.format(address, size))

LAB: UNICORN ENGINE CODE HOOKLAB: UNICORN ENGINE CODE HOOK
Output:

LAB: UNICORN ENGINE BASICSLAB: UNICORN ENGINE BASICS
We are capable to:

Create a Python script to use Unicorn Engine
Set and read registers values
Execute selected parts of code
Hook the code
Debug our own script

LAB: UNICORN ENGINE 02CIPHERLAB: UNICORN ENGINE 02CIPHER
Let's tackle a new challenge!
This time, it's a substitution cipher
Execute the binary: ~/training/02cipher/02cipher
Load it into Ghidra and analyze it!
If you're curious, check out the source code: ~/training/02cipher/02cipher.c

LAB: UNICORN ENGINE 02CIPHERLAB: UNICORN ENGINE 02CIPHER
Find and decompile the main() function
Retype uStack_78 (name might differ) to char[100]
Make a note of the strings and copy them

LAB: UNICORN ENGINE 02CIPHERLAB: UNICORN ENGINE 02CIPHER
Find the substitutionCiper() function

How many arguments does it have?
What is the start and end address?
Does it use stack? Heap?

Repeat this for the substitutionDecipher() as well

LAB: UNICORN ENGINE 02CIPHERLAB: UNICORN ENGINE 02CIPHER
Now that we have all the details we need, try to:

create a script for substitutionCiper() and the �rst string
print the output and compare it to the binary's output
create another script for substitutionDeciper() and 2nd string

Feel free to use 02skeleton.py!

LAB: UNICORN ENGINE 03ENCRYPTLAB: UNICORN ENGINE 03ENCRYPT
Let's tackle another new challenge!
This time, it's AES encryption (OpenSSL)
Execute the binary: ~/training/03encrypt/03encrypt test�le
It generated and printed its AES key and created the following �le:

output_�le.encrypted
Check its content with xxd!

LAB: UNICORN ENGINE 03ENCRYPTLAB: UNICORN ENGINE 03ENCRYPT
Our task is to decrypt the secret.enc �le
To speed up the process:

We can read the encryptor's source: 03encrypt.c
We can modify the 03skeleton.py source (generate key)
We can modify the 03decrypt-skeleton.c source (decrypt �le)

LAB: UNICORN ENGINE 03ENCRYPTLAB: UNICORN ENGINE 03ENCRYPT
The encrypted �le's content looks like this:

byte 0..7 - seed
byte 8..X - encrypted content

The seed is used to generate the key
Let's �nd the key generation function

LAB: UNICORN ENGINE 03ENCRYPTLAB: UNICORN ENGINE 03ENCRYPT
Make a note of the IV:

LAB: UNICORN ENGINE 03ENCRYPTLAB: UNICORN ENGINE 03ENCRYPT
Function used to generate the key:

LAB: UNICORN ENGINE 03ENCRYPTLAB: UNICORN ENGINE 03ENCRYPT
Find the generateAESKey() function

How many arguments does it have?
What is the start and end address?
Does it use stack? Heap?

What is the size of the binary?

LAB: UNICORN ENGINE 03ENCRYPTLAB: UNICORN ENGINE 03ENCRYPT
Now that we have all the details we need, try to:

use skeleton script for generateAESKey()
seed should come from the encrypted �le
print the key after the function returned

LAB: UNICORN ENGINE 03ENCRYPTLAB: UNICORN ENGINE 03ENCRYPT
After the key is generated:

use the 03decrypt-skeleton.c source to write your decryptor
specify the IV and the key in the source
compile it according to the instruction in the �le header

// compile: gcc 03decrypt-skeleton.c -o 03decrypt -lssl -lcrypto

FURTHER READING AND RESOURCESFURTHER READING AND RESOURCES
Tutorial for Unicorn
Unicorn Engine Notes
Unicorn Engine tutorial
Unicorn Engine Reference (Unof�cial)

https://www.unicorn-engine.org/docs/tutorial.html
https://github.com/alexander-hanel/unicorn-engine-notes
https://eternal.red/2018/unicorn-engine-tutorial/
https://hackmd.io/@K-atc/rJTUtGwuW?type=view

AFTER THE WORKSHOPAFTER THE WORKSHOP
Well done! You've successfully covered the workshop material
If you'd like to take your learning further:

Continue with the following slides and explore more challenges
Join us for the full SRE training:
Follow us on twitter:

Software Reverse Engineering Training
@MantraInfoSec

https://mantrainfosec.com/training-sre.html
https://x.com/MantraInfoSec

LAB: UNICORN ENGINE + CAPSTONE DISASSEMBLERLAB: UNICORN ENGINE + CAPSTONE DISASSEMBLER
Can you create a disassembler?
Sounds more complex than it is
Capstone is a lightweight multi-architecture disassembly framework
API for C, Python, Java, PowerShell, Rust, etc...
Combining it with Unicorn Engine makes it really powerful
Use 01caesar and 01caesar.py for this

LAB: UNICORN ENGINE + CAPSTONE DISASSEMBLERLAB: UNICORN ENGINE + CAPSTONE DISASSEMBLER
First capstone needs to be imported:

A Capstone instance needs to be created:

from capstone import *

capmd = Cs(CS_ARCH_X86, CS_MODE_64)

LAB: UNICORN ENGINE + CAPSTONE DISASSEMBLERLAB: UNICORN ENGINE + CAPSTONE DISASSEMBLER
The following function needs to be added and the hook replaced:

def disas_single(data, address):
 for i in capmd.disasm(data, address):
 print("0x%x:\t%s\t%s" % (i.address, i.mnemonic, i.op_str))

def hook_code(uc, address, size, user_data):
 print("[*] Current RIP: 0x{}, instruction size = 0x{}".
 format(address, size))
 mem = uc.mem_read(address, size)
 disas_single(bytes(mem), address)

LAB: UNICORN ENGINE + CAPSTONE DISASSEMBLERLAB: UNICORN ENGINE + CAPSTONE DISASSEMBLER
Output:

LAB: OBFUSCATED CIPHER: UNICORNLAB: OBFUSCATED CIPHER: UNICORN
Find your target under: ~/training/extra/05cipher-unicorn/05cipher-unicorn
Executable deciphers a ciphered message
Create a Unicorn script that deciphers the message from decipher.this
External function might cause an issue
Patch them from Unicorn!
Use mem_write() and assemblers to create machine code

Join us for the full SRE training:
Software Reverse Engineering Training

https://mantrainfosec.com

https://mantrainfosec.com/training-sre.html
https://mantrainfosec.com/

