
Lessons Learned
from (almost) 8 Years of Sigma Development

Thomas Patzke, 2024-10-22



Sigma Introduction

• Generic language for log detection rules.

• Rules are converted into target query 
language and data model. 

• Content: detection rule repository with 
2.000+ rules 

• Code: toolchain for parsing, transformation 
and conversion of rules.

• https://sigmahq.io/

https://sigmahq.io/


Project History

2016/17: Start

• Everything in one Repository.

• Monolithic PoC-grade Toolchain code (Sigmac) 

2020: Restructure 
& Rewrite

• Splitting rules, repositories, backends and pipelines into separate projects. 

• Toolchain rewrite: pySigma and Sigma CLI

2023/24: Evolution

• Correlations

• Filters

• Query postprocessing

• … 



Project Structure: How it has started

• Started with everything in one 
repository with code and content.

• Sigmac (Sigma Converter) as 
monolithic script.

• Worked very well in the beginning.

Sigma repository

Rules

Sigmac

Target query 
language 
support

Target query 
data model 

support

Ferdinand Reus / CC-BY-SA-2.0

https://creativecommons.org/licenses/by-sa/2.0/


The good and the bad…

Advantages

• User friendly: one project 
contains everything.

• Low overhead

• Dependent changes are done 
quickly

• No coordination between related 
projects. 

Disadvantages

• Everything is mixed up, 
contributors and maintainers lose 
track. 

• No ownership and lack of 
responsibility. 

• No choice about contribution 
location.

• What does a release include?



Keep vs Rewrite

• Decision in 2020: rewrite the whole toolchain

• Rewrite from scratch: throw most that exists away.

• Opportunity to not making some mistakes again.

• Opportunity to adopt good practices from the beginning.

• Huge win: test-driven development
• Before: code mostly without tests. Even smaller changes often broke something.

• Now: >1.000 tests. Things broken by changes are directly visible (mostly).

• Enables quick integration of contributions and new features.

• Increases code quality.

• Drawback: few backends are still only available in legacy toolchain.



Project Structure: How it‘s gone

• Separation of code and content.

• Further separation of code into 
manageable sub-projects with 
pySigma at its core.

• Core components under SigmaHQ
org, some backends are 
hosted/published independently.

Cookiecutter
Template

pySigma

Processing 
Pipelines

Backends

Sigma CLI
sigconverter

.io
Rules

Used in

Used in

Used in

Uses

Creates

Creates

U
sed

 in

U
sed

 in



Project Structure: Lessons Learned

• Starting in one big repository enabled us to quickly move forward with 
major changes.

• Increased complexity, decreased quality and development pace.

• Rewrite/split increased adoption of pySigma in other tools (e.g. 
sigconverter.io) and use cases (lots of private setups).

• Increased effort. Major/breaking changes now need release of several 
projects.

• Dependency complexity: backend depends on specific pySigma version, 
CLI on another.



License: How it has started

• GPL all the things!

But… 

• How to integrate Sigma into a commercial product or context? 

• How can the converted query be used? 

• Must all changes (especially environmental baselining) to the detection 
be contributed back to the Sigma rule?



Licenses: how it‘s gone

• Specification is public domain

• Repository with detections is DRL-licensed (Detection Rule License)
• Contributors agreed that it should be permissive.

• Attribution of rule authors (and not the Sigma project, SigmaHQ etc.)

• Attribution in the UI, not somewhere deep inside a program directory.

Toolchain for parsing, transformation and conversion of Sigma rules:

• Library pySigma and CLI (LGPL)

• Backends + Processing Pipelines: it depends



Lessons Learned: Licenses

• Choose wisely!

• Switching licenses is challenging.

• License must match the use case (code vs detection rules).

• Consider carefully if you really need a custom license!



Releases & Contributions

• Release early, release often!

• Contributions:
• (Un)maintained?

• Fix/small improvement or major change or new concept?

• Balance between ensuring quality and tolerance.

• Turning PRs that don’t meet requirements to such that do.

• Roadmap?
• Yes, plans about features to be implemented

• No dates or timeline



Staying Motivated

Developing & maintaining an open 
source project is…

• Fixing issues, sometimes very 
subtle ones.

• Support in solving problems

• Lots of communication

• Developing new features & 
Improving existing.

• Contribute

• Feedback (+ & -)

• Sponsoring

• Don’t stress yourself, take breaks!



Thanks & Contact

thomas@patzke.org

@thomaspatzke@infosec.exchange

https://github.com/thomaspatzke

https://sigmahq.io/

mailto:thomas@patzke.org
https://github.com/thomaspatzke
https://sigmahq.io/

	Folie 1: Lessons Learned
	Folie 2: Sigma Introduction
	Folie 3: Project History
	Folie 4: Project Structure: How it has started
	Folie 5: The good and the bad…
	Folie 6: Keep vs Rewrite
	Folie 7: Project Structure: How it‘s gone
	Folie 8: Project Structure: Lessons Learned
	Folie 9: License: How it has started
	Folie 10: Licenses: how it‘s gone
	Folie 11: Lessons Learned: Licenses
	Folie 12: Releases & Contributions
	Folie 13: Staying Motivated
	Folie 14: Thanks & Contact

