
Catching Phish Using Publicly 
Accessible Information



Certificate Transparency (CT)



HTTP Referer (1)



HTTP Referer (2)



Canary Tokens



import requests, mmh3, base64

response = requests.get('https://c.s-microsoft.com/favicon.ico')

favicon = base64.encodebytes(response.content)

hash = mmh3.hash(favicon)

print(hash)

MurmurHash3



Fuzzy Hash

1. Compute a fuzzy hash 
(ssdeep, TLSH) for the 
HTML and DOM 
(Document Object Model)

2. Check if there are 
similarities between legit 
and phishing site



Phishing campaign detection

- Graph DB (neo4j) of 
ssdeep hashes, URLs, and 
targeted spoofed brands

- Strongly correlated clusters 
of nodes represent different 
phishing campaigns derived 
from a unique source code 
hosted on a unique domain

Visualizations using https://gephi.github.io/

https://gephi.github.io/


dnstwist

- Bitsquatting
- Homoglyph
- Hyphenation
- Insertion
- Omission
- Addition
- Repetition
- Replacement
- Transposition
- Subdomain
- Vowel swap
- etc.


